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Problem 1. Operating Systems (22 points) 
 
Two processes, A and B, run the RISC-V programs shown below. Code listings use virtual 
addresses. All pseudoinstructions in these programs translate into a single RISC-V instruction. 
Assume all registers and memory start with a default value of zero. 
 

Program for process A Program for process B 
. = 0x0 
li t0, 0x100  
lw a0, 0(t0) 
lw a1, 0x150(t0) 
muli t1, t0, 2 
div t1, t0, a0 
addi a1, a1, 4  
sw t1, 0(t0) 
sw a1, 0x190(x0)  
unimp 
 

. = 0x0 
li t0, 0x50 
li t1, 0x300 
loop:  
  addi t0, t0, 0x100  
  lw a1, 0(t0)  
  add a0, a0, a1 
  blt t0, t1, loop 
end: 
  sw t0, 0x700(x0) 
unimp 
 

 
(A) (4 points) These processes run on a custom OS that supports segmentation-based (base and 

bound) virtual memory. Process A’s virtual memory base is at physical address 0x200 and its 
virtual memory bound is 0x200 (exclusive). Process B’s virtual memory base is at physical 
address 0x400 and its virtual memory bound is 0x300 (exclusive). Which instructions will 
cause a segmentation fault assuming program execution continues past segmentation faults? 
You may not need all blanks. 

Circle one:    Process A    /    Process B    

Full instruction: _____ lw a1, 0x150(t0)________ 

Circle one:    Process A    /    Process B    

Full instruction: _____ lw a1, 0x0(t0)__________ 

Circle one:    Process A    /    Process B    

Full instruction: _____ sw t0, 0x700(x0)________ 

 

Assume for the following parts that we use paging based virtual memory rather than 
segmentation. For both Process A and Process B, the page size is 210 bytes and only the virtual 
page with VPN = 0 is resident in main memory. All other VPNs will raise a Page Fault exception 
on the first access. 

The OS uses timer interrupts to switch between executing process A and B; if a timer interrupt 
occurs while one process is executing, the other process begins executing after the exception is 
handled. 

In addition, the RISC-V processor has additional hardware to support the div rd, rs1, rs2 
instruction, which divides rs1 by rs2 and writes the result into rd. The muli rd, rs1, imm 
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instruction, which writes the product of rs1 and imm into rd, is unsupported in hardware and 
must be emulated in software by the OS.  

(B) (5 points) The OS schedules process B first but sends a timer interrupt while process B is 
executing its addi instruction in the first iteration of its loop. What are the values of registers 
t0, t1, a0, a1, pc		(in virtual address) in processes A and B after the timer interrupt? 
Recall that all registers and memory start with a default value of zero. 
 
 

                                                            Process A:    

t0: ___________0_____________ 

t1: ___________0_____________ 

a0: ___________0_____________ 

a1: ___________0_____________ 

pc: ___________0_____________ 

 
 

                                                           Process B:    

t0: _________0x50_____________ 

t1: ________0x300_____________ 

a0: ____________0_____________ 

a1: ____________0_____________ 

pc: __________0x8_____________ 

 
 

Process that OS returns control to after timer interrupt: _______A__________ 
 
No instructions in Process A have been executed, so all registers and pc are still 0. The addi 
instruction in process B did not finish executing before the timer interrupt, so t0 was not updated 
to 0x150. When the OS switches back to Process B, execution will begin at the addi instruction. 
 
 
(C) (3 points) Process A begins executing. What is the address of the first instruction that raises 

an exception in Process A, and what is its cause? 
 

Addr of first instruction that raises an exception in A: ___________0xC____________ 
 

Cause for Exception (circle one):   Page Fault   /   Unsupported Instruction   /   Division By 
Zero 
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(D) (5 points) Process A continues executing and eventually raises a Division By Zero exception 
because of the div instruction. The OS has a unique way of handling Division By Zero 
exceptions: it changes the divisor from 0 to 1 and returns control back to the same process, so 
that the RISC-V processor can re-execute the div instruction. What are the values of 
registers t0, t1, a0, a1, pc		(in virtual address) after the OS returns control to Process 
A? 

t0: __________0x100____________ 

t1: __________0x200____________ 

a0: ______________1____________ 

a1: ______________0____________ 

pc: ___________0x10____________ 

 
(E) (5 points) Below is a list of all exceptions raised during the execution of Process A and 

Process B, in sequential order. The Page Fault exception is raised in Process B by the sw 
t0, 0x700(x0) instruction. Fill in the rest of the diagram to indicate when the processor is 
running in user mode for Process A, user mode for Process B, or supervisor mode. The first 
timer interrupt is drawn as an example. Assume that no additional exceptions occur beyond 
those listed in the diagram, and that timer interrupts always switch control to the other 
process. 
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Problem 2. Virtual Memory (22 points) 
 
Using his newfound knowledge of virtual memory, Ben Bitdiddle decides to analyze the page 
table characteristics of his RISC-V processor.  His processor contains 2!" bytes of virtual 
memory, 24-bit physical addresses, and page sizes of 4096 (2#!) bytes per page. 
 
(A) (2 points) Calculate the following parameters relating to the size of the page table assuming a 

single-level (flat) page table. Each page table entry contains a dirty bit and a resident bit. 
Your final answer can be a product or exponent. 
 
 

Size of page table entry (in bits): _____14_____ 

 
Number of entries in page table: _____𝟐𝟏𝟏_____ 

 
 

(B) (1 point) Assuming the page table is not in physical memory, what is the maximum fraction 
of virtual memory that can be resident in physical memory at any given time? 
 

Fraction of virtual memory that can be resident in physical memory:  
 

_____	𝟏	𝒐𝒓	𝟏𝟎𝟎%_______   
 

(C) (2 points) If we double the size of our virtual memory but keep the same page size and 
physical memory size, what effect will the change have on the size of a page table entry and 
on the number of entries in the page table?  Use letters “a” through “e” to indicate how the 
new value of the parameter compares to the old value of the parameter: 
 
(a) doubled      (b) increased by 1      (c) stays the same     (d) decreased by 1     (e) halved 
 

 
Width of each page table entry in bits: _____ c _____ 

 
Number of entries in the page table: _____ a _____ 
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For the rest of the problem, keep the amount of virtual memory as 𝟐𝟐𝟑 bytes. 
 
(D) (8 points) A program has been halted right before 

executing the following instructions, located at 
virtual address 0x2FC.  
 

. = 0x2FC 
lw x2, 0(x6) // x6 = 0x1C5C 
sw x3, 4(x7) // x7 = 0x6954 

 
The first 8 entries of the page table are shown to the 
right. The page table uses an LRU replacement 
policy. Assume that all physical pages are currently 
in use.  
 
In the table below, specify which virtual address(es) 
are accessed when executing these instructions. For 
each virtual address, please indicate the VPN, 
whether or not the access results in a page fault, the 
PPN, and the physical address. If there is not enough information given to determine a given 
value, write N/A. Please write all numeric values in hexadecimal. 
 

Virtual Address VPN Page Fault 
(Yes/No) PPN Physical Address  

0x2FC 0x0 Yes 0xA2 0xA22FC  

0x1C5C 0x1 No 0xDC 0xDCC5C  

0x300 0x0 No 0xA2 0xA2300  

0x6958 0x6 Yes 0xE5 0xE5958  

 
(E) (2 points) Which virtual page(s), if any, need(s) to be written back to disk as a result of 

executing the two instructions above?  Provide the VPN(s) and its corresponding PPN(s). 
Enter None, if no write back to disk is required.  You may not need to use both lines. 

 
VPN _____0x5_____ PPN ____0xA2______written back to disk 

 
VPN __________ PPN __________written back to disk 

 
(F) (2 points) Ben is curious if changing the page size will affect the number of page faults he 

encounters.  For each of the following page sizes, please write the number of unique VPNs 
that will be accessed while running the above code. 
 

28 bytes per page: _____4____ 

 
216 bytes per page: _____1____ 

                             Page Table 
VPN R D PPN 

0 0 -- --- 

1 1 0 0xDC 

2 1 0 0x43 

Next LRU ® 3 1 0 0xE5 

4 0 -- --- 

  LRU ® 5 1 1 0xA2 

6 0 -- --- 

7 1 1 0x10 

 …   
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For the rest of the problem, keep the original page size of 𝟐𝟏𝟐 bytes. 
 
(G) (5 points) Consider the same RISC-V processor. We add a 4-element, fully-associative 

Translation Lookaside Buffer (TLB) with an LRU replacement policy. A program running on 
the processor is halted right before executing the following instruction located at address 
0xF0A0: 

 
. = 0xF0A0 
lw x1, 0x20(x7) // x7 = 0x2FE8 

 
The contents of the TLB and the first 8 entries of the page table are shown below. The page 
table and TLB use an LRU replacement policy. Assume that all physical pages are currently 
in use.  

 

 
 

 
 
 
 
 
In the table below, specify which virtual address(es) are accessed when executing this 
instruction.  For each virtual address, please indicate the VPN, whether or not the access 
results in a TLB Hit, whether or not the access results in a page fault, the PPN, and the 
physical address. If there is not enough information given to determine a given value, please 
write N/A. Please write all numerical values in hexadecimal. 

 
Virtual 
Address VPN TLB Hit 

(Yes/No) 
Page Fault 
(Yes/No) PPN Physical 

Address 
 

0xF0A0 0xF Yes No 0x10 0x100A0  

0x3008 0x3 No Yes 0xB9 0xB9008  

 
  

                              Page Table 

VPN R D PPN 

LRU ® 0 1 0 0xB9 

1 0 0 ---- 

2 1 1 0x52 

3 0 0 ---- 

4 1 0 0x19 

5 1 1 0x89 

Next LRU ® 6 1 0 0xA7 

7 0 0 ---- 

 …   

                TLB 
 VPN R D PPN 

LRU ® 0x70 1 0 0xA2 
 0x2 1 1 0x52 
 0xD3 1 1 0x65 
 0xF 1 0 0x10 
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Problem 3. Exception (mis)handler (20 points) 
 
Mr. Chet G. Peaty has been hired as a coding assistant at your startup that makes new and 
exciting RISC-V exception handlers for clients. He is generally a great programmer, but you need 
to be very careful when using the code he produces, should there be any subtle bugs. 
 
Your clients can only afford cheap RV32I processors, so they have contracted you to build an 
exception handler to handle multiply instructions. A colleague of yours has already written the 
multiply instruction emulator, which takes the instruction word in a0 and a pointer to the 
curProc struct in a1, extracts the fields from the instruction word, reads the source registers 
from the curProc struct, performs the multiplication and stores the results in the destination 
register in the curProc struct (assume the correct result is placed in the destination register of 
the curProc struct and that no other values are modified).  Also, assume the exception handler 
does not support any other types of exceptions. 
 
Mr. Chet G. Peaty has produced the following, possibly faulty, ex_handler code, and here’s 
what his code does: 

• Saves user process registers and exception PC value to the curProc struct in memory. 
• Reads the instruction that faulted, calls the multiply instruction emulator with it. 
• Restores the user process registers and PC value from the curProc struct. 
• Jumps back to user space. 

/*         *** USER SPACE *** 
 * (code written by a client company) */ 
 
calc_volume: 
    lw a1, 0x0(a0) 
    lw a2, 0x4(a0) 
    mul a3, a1, a2 
    lw a4, 0x8(a0) 
    mul a0, a3, a4 
    ret 
 

/*         *** KERNEL SPACE *** 
 * (code by Mr. Chet G. Peaty) 
 * Exception handler entry point. */ 
 
ex_handler: 
// Reg[mscratch] = a1 
    csrw mscratch, a1  
    // save regs to curProc 
    // using mscratch 
    // ... 
     
    // save pc to curProc 
    csrr a2, mepc 
    lw a1, curProc 
    sw a2, 0(a1) 
 
    // read mul inst. from memory 
    lw a0, 0(a2) 
    call emulate_mul 
     
    // restore pc from curProc 
    lw a1, curProc 
    lw a2, 0(a1) 
    csrw mepc, a2 
 
    // restore regs from curProc 
    // ... 
 
    // return to the user process 
    mret 
 
// other unrelated instructions 
addi a4, a5, 4 
xori a2, a3, -1 
 

/*        *** KERNEL SPACE ***       */ 
/* Data used by exception handler    */ 
typedef struct { 
    int pc; 
    int regs[31]; 
} ProcState; 
 
ProcState* curProc; 
 
/* Emulates the mul instruction. Stores 
 * the result in the destination reg in 
 * the ProcState. Does not modify any 
 * other regs or pc in the ProcState. 
 * Args (a0): Instruction to emulate 
 *      (a1): Pointer to a ProcState */ 
 
emulate_mul: 
    // (assume this works correctly) 
    // ... 
    ret 
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Recall that csrr reads from a CSR (control and status register) and csrw writes to a CSR.  mret 
returns from the exception handler to user mode.  mret behaves just like a branch instruction 
in that it gets resolved in the EXE stage. 
  
(A) (6 points) Assume this code is running on a standard 5 stage pipelined RISC-V processor 

with full bypassing and annulment.  Assume that it uses lazy exception handling (just 
before the commit point), and that branches are always predicted not taken and are resolved 
in the EXE stage.  

Please fill in the pipeline diagram until the cycle in which the csrw instruction from the 
exception handler enters the IF stage. You may leave any columns blank after this. You may 
ignore the shaded cells and may write a dash (--) to indicate a nop. You do not need to draw 
any bypassing arrows but make sure to account for any required stalls. The first lw 
instruction of the calc_volume function has been indicated for you. 
 

 100 101 102 103 104 105 106 107 108 109 110 
IF lw lw mul lw mul ret csrw     

DEC  lw lw mul lw mul --     

EXE   lw lw mul lw --     

MEM    lw lw mul --     

WB     lw lw --     

 
(B) (2 points) Your client just sent feedback on your exception handler. They say their program 

never returns from a call to the calc_volume function. Briefly explain the reason for this 
behavior. 

Explanation:  
 

The handler does not add 4 to pc so it keeps jumping back to the faulting mul instruction 
which keeps triggering the exception handler, and goes into this infinite loop. 
 

 
 
 
 
(C) (5 points) Once again assuming lazy exception handling, please fill in the following pipeline 

diagram starting from when the exception handler first returns to the user space code, to when 
the exception handler is fetched the next time (i.e. when the csrw instruction enters the IF 
stage). You may leave any columns blank after this. You may ignore the shaded cells and 
may write a dash (--) to indicate a nop. You do not need to draw any bypassing arrows but 
make sure to account for any required stalls. The mret instruction of the handler has been 
indicated for you.  Hint: Recall that with the code as currently written, the calc_volume 
function never returns. 
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 200 201 202 203 204 205 206 207 208 209 210 

IF mret addi xori mul lw mul ret csrw    

DEC  mret addi -- mul lw mul --    

EXE   mret -- -- mul lw --    

MEM    mret -- -- mul --    

WB     mret -- -- --    

 
(D) (2 points) Since Mr. Chet G. Peaty’s work is mostly correct, you decide to apply a small fix 

yourself to the exception handler. Add exactly one instruction to the handler by filling in 
one of the blanks below in order to fix the exception handler. 

 
ex_handler: 
    csrw mscratch, a1 
 
    _______________________________ 
    // save regs to curProc 
    // using mscratch 
    // ... 
     
    _______________________________ 
    // save pc to curProc 
    csrr a2, mepc 
     
    Either: addi a2, a2, 4_________ 
    lw a1, curProc 
    sw a2, 0(a1) 
 
    // read mul inst. from memory 
    lw a0, 0(a2) 
     
    _______________________________ 
    call emulate_mul 
     
    // restore pc from curProc 
    lw a1, curProc 
    lw a2, 0(a1) 
 
    Or: addi a2, a2, 4_____________ 
    csrw mepc, a2 
 
    // restore regs from curProc 
    // ... 
 
    // return to the user process 
 
    _______________________________ 
    mret 
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(E) (5 points) In this question, assume that: 
• We use a single-cycle processor with a single memory that holds both data and 

instructions. 
• Virtual memory is not used, so all code (including user code and exception handler) runs 

on the same address space. 
 
You ask Mr. Chet G. Peaty to simplify the exception handler and change it such that it stops 
running into infinite loops. But his new handler, shown below, does not work correctly either. 

 
//   *** USER SPACE *** 
 
// same code as above 
calc_volume: 
    lw a1, 0x0(a0) 
    lw a2, 0x4(a0) 
    mul a3, a1, a2 
    lw a4, 0x8(a0) 
    mul a0, a3, a4 
    ret 
 
// unrelated instructions 
addi t6, t9, 4 
xor s1, s2, s3 
 

//  *** KERNEL SPACE *** 
 
ex_handler: 
    csrr a0, mepc 
    lw a1, nop_slide 
    sw a1, 0(a0) 
    mret 
 
nop_slide: 
    sll x0, x1, x2 
    add x0, x3, x4 
    xor x0, x5, x6 

 
The client now uses this exception handler on a single cycle RISC-V processor and calls 
calc_volume a hundred times in a loop. How many times does the exception handler get 
called? Circle one and briefly explain. 

 
Still runs into an infinite loop 

 
Once 

 
Twice 

 
A hundred times 

 
Two hundred times 

 
Explanation:  

 
Each call of the exception handler replaces the faulting instruction with a sll x0, x1, x2 instruction 
(effectively a nop). Once both the mul instructions have been replaced, the exception handler is 
never called again.  
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Problem 4. E-Commerce Synchronization (18 points) 

You and your friends want to build the world’s biggest e-commerce company, so you’ve started 
6191 Mercato. In your first prototype there are two types of threads.  There can be multiple 
instances of each type of thread. 

The first thread type is the producer, which is responsible for creating the products you plan to 
sell. Your warehouse can store at most 500 products. Any product above this capacity is wasted, 
so you want to avoid this. The second thread type is the sales service, which ensures that a 
customer can purchase a completed product. The buy_product() function removes a product 
from the warehouse and ships it to the customer. 

 
Shared Memory:  
 
int stored = 0 
 
 
Producer Code: 
 
if stored < 500 { 
 
   stored = stored + 1 
 
   create_product() 
 
} 

 
Sales Code: 
 
if stored > 0 { 
 
   buy_product() 
 
   stored = stored - 1 
 
} 

 
 
(A) (4 points) Using the code given above, answer if the following conditions are possible: 

1. You exceed your maximum capacity of 500 products. 
Two machines running production code can run “stored = stored + 1” concurrently, 
resulting in stored not being properly incremented to reflect both of these products being 
created and stored in the warehouse. 

 
Possible / Not Possible 

 
2. A customer tries to buy a nonexistent product.  

Two machines running sales code can run “stored = stored - 1” concurrently, resulting in 
stored not being properly incremented to reflect both of these products being purchased. 

 
                                                                              Possible / Not Possible 

 
(B) (14 points) Customers have started complaining about receiving faulty products, so in your 

second iteration of 6191 Mercato, you introduce a single Quality Assurance (QA) thread. 
After a product has been created and stored in the warehouse, the QA thread must inspect the 
product before a customer is able to purchase it. However, performing a QA inspection on an 
individual product is costly, so you want the QA thread to operate on batches of ten products 
at once.   
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Here are the conditions your code should meet: 
• You should not have more than 500 products stored in the warehouse at a time. 
• There can be multiple producer and sales threads, but there is only one QA thread. 
• You should perform inspections on batches of 10 products at a time. 
• You should only allow a customer to purchase a product when it is actually ready for 

purchase (has been created and passed an inspection). 
• You should keep track of the total number of products created. 
• You can use at most 4 semaphores to complete the code, and you cannot initialize your 

semaphores to negative values. 
• There should be no deadlocks in your code. 
• You should not introduce any extra precedence constraints. 
• You may only add semaphore declaration and initialization in shared memory, and 

wait(sem) and signal(sem) calls in the code. 
 

Complete the code below. If you want to call wait or signal on semaphore sem multiple times (say 
n times) in a row, you can simply write “wait(sem) x  n” or “signal(sem) x n”. 
 
Shared Memory:  
int count = 0     // keeps track of the total number of products created 
lock = 1, capacity = 500, inspect = 0, finished = 0  
 
Producer: 
 
 
 
 
 
wait(capacity) 
 
wait(lock) 
count = count + 1 
 
signal(lock) 
 
 
 
 
 
 
create_product() 
 
signal(inspect) 
 
 
 
 
goto Producer 

QA:  
 
 
 
 
 
wait(inspect) x 10 
 
 
inspect_10() 
 
signal(finished) x 10 
 
 
 
 
 
 
 
 
 
 
 
 
 
goto QA 

Sales: 
 
 
 
 
 
wait(finished) 
 
 
buy_product() 
 
signal(capacity) 
 
 
 
 
 
 
 
 
 
 
 
 
 
goto Sales 
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Problem 5. Cache Coherence (18 points) 
 
Ben Bitdiddle is designing a snoopy-based, write-invalidate MSI protocol for write-back caches. 
Suppose processors P1 and P2 have private snoopy caches. Both caches are initially empty. 
Consider the following sequence of accesses:  

I0 P1: read A  
I1 P2: read B  
I2 P1: write A  
I3 P1: write B  
I4 P2: write B  
I5 P1: read B  
I6 P2: read A  
 

(A) (9 points) Assume blocks A and B do not conflict in the cache. Using the MSI protocol, fill 
in the following table showing the cache line states for A and B after each access.  For each 
bus transaction, specify which processor initiated it and which address it is for (e.g., P1: 
BusRd(A)).  We provide you with the MSI cache coherence state transition diagram for 
reference. 
 
 

 
 
 
 
 
 
 
 
 

Access Shared bus transaction Processor P1’s cache Processor P2’s cache 

Initial state  A:   I B:   I A:   I B:   I 

After P1 reads A P1: BusRd(A) A:   S B:   I A:   I B:   I 

After P2 reads B P2: BusRd(B) A:   S B:   I A:   I B:   S 

After P1 writes A P1: BusRdX(A) A:   M B:   I A:   I B:   S 

After P1 writes B P1: BusRdX(B) A:   M B:   M A:   I B:   I 

After P2 writes B P2: BusRdX(B) 
P1: BusWB(B) A:   M B:   I A:   I B:   M 

After P1 reads B P1: BusRd(B)  
P2: BusWB(B) A:   M B:   S A:   I B:   S 

After P2 reads A P2: BusRd(A)  
P1: BusWB(A) A:   S B:   S A:   S B:   S 
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(B) (9 points) Repeat part A using a MESI protocol.  We provide you with the MESI cache 
coherence state transition diagram for reference. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Access Shared bus transaction Processor P1’s cache Processor P2’s cache 

Initial state  A:   I B:   I A:   I B:   I 

After P1 reads A P1: BusRd(A) A:   E B:   I A:   I B:   I 

After P2 reads B P2: BusRd(B) A:   E B:   I A:   I B:   E 

After P1 writes A  A:   M B:   I A:   I B:   E 

After P1 writes B P1: BusRdX(B) A:   M B:   M A:   I B:   I 

After P2 writes B P2: BusRdX(B) 
P1: BusWB(B) A:   M B:   I A:   I B:   M 

After P1 reads B P1: BusRd(B)  
P2: BusWB(B) A:   M B:   S A:   I B:   S 

After P2 reads A P2: BusRd(A)  
P1: BusWB(A) A:   S B:   S A:   S B:   S 

 
After first access: A will be in E in P1. 
After second access: B will be in E in P2. 
After third access: No BusRdX required, E -> M in P1 for A. 
 
 
 
 
 
 
 

End of Quiz 3 


