
6.191 Spring 2025 - 1 of 15 - Quiz #3

M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.191 Computation Structures
Spring 2025

Quiz #3

Name

Solutions
Athena login name

Score

Recitation section
o WF 10, 34-302 (Hilary) o WF 2, 34-302 (Raymond) o WF 12, 35-308 (Keshav)
o WF 11, 34-302 (Hilary) o WF 3, 34-302 (Raymond) o WF 1, 35-308 (Keshav)
o WF 12, 34-302 (Ezra) o WF 10, 35-308 (Harry) o WF 2, 8-205 (Vedantha)
o WF 1, 34-302 (Ezra) o WF 11, 35-308 (Harry) o WF 3, 8-205 (Vedantha)
 o opt-out

Please enter your name, Athena login name, and recitation section above. Enter your answers
in the spaces provided below. Show your work for potential partial credit. You can use the extra
white space and the back of each page for scratch work.

1 /22
2 /22
3 /20
4 /18
5 /18

6.191 Spring 2025 - 2 of 15 - Quiz #3

Problem 1. Operating Systems (22 points)

Two processes, A and B, run the RISC-V programs shown below. Code listings use virtual
addresses. All pseudoinstructions in these programs translate into a single RISC-V instruction.
Assume all registers and memory start with a default value of zero.

Program for process A Program for process B
. = 0x0
li t0, 0x100
lw a0, 0(t0)
lw a1, 0x150(t0)
muli t1, t0, 2
div t1, t0, a0
addi a1, a1, 4
sw t1, 0(t0)
sw a1, 0x190(x0)
unimp

. = 0x0
li t0, 0x50
li t1, 0x300
loop:
 addi t0, t0, 0x100
 lw a1, 0(t0)
 add a0, a0, a1
 blt t0, t1, loop
end:
 sw t0, 0x700(x0)
unimp

(A) (4 points) These processes run on a custom OS that supports segmentation-based (base and

bound) virtual memory. Process A’s virtual memory base is at physical address 0x200 and its
virtual memory bound is 0x200 (exclusive). Process B’s virtual memory base is at physical
address 0x400 and its virtual memory bound is 0x300 (exclusive). Which instructions will
cause a segmentation fault assuming program execution continues past segmentation faults?
You may not need all blanks.

Circle one: Process A / Process B

Full instruction: _____ lw a1, 0x150(t0)________

Circle one: Process A / Process B

Full instruction: _____ lw a1, 0x0(t0)__________

Circle one: Process A / Process B

Full instruction: _____ sw t0, 0x700(x0)________

Assume for the following parts that we use paging based virtual memory rather than
segmentation. For both Process A and Process B, the page size is 210 bytes and only the virtual
page with VPN = 0 is resident in main memory. All other VPNs will raise a Page Fault exception
on the first access.

The OS uses timer interrupts to switch between executing process A and B; if a timer interrupt
occurs while one process is executing, the other process begins executing after the exception is
handled.

In addition, the RISC-V processor has additional hardware to support the div rd, rs1, rs2
instruction, which divides rs1 by rs2 and writes the result into rd. The muli rd, rs1, imm

6.191 Spring 2025 - 3 of 15 - Quiz #3

instruction, which writes the product of rs1 and imm into rd, is unsupported in hardware and
must be emulated in software by the OS.

(B) (5 points) The OS schedules process B first but sends a timer interrupt while process B is
executing its addi instruction in the first iteration of its loop. What are the values of registers
t0, t1, a0, a1, pc		(in virtual address) in processes A and B after the timer interrupt?
Recall that all registers and memory start with a default value of zero.

 Process A:

t0: ___________0_____________

t1: ___________0_____________

a0: ___________0_____________

a1: ___________0_____________

pc: ___________0_____________

 Process B:

t0: _________0x50_____________

t1: ________0x300_____________

a0: ____________0_____________

a1: ____________0_____________

pc: __________0x8_____________

Process that OS returns control to after timer interrupt: _______A__________

No instructions in Process A have been executed, so all registers and pc are still 0. The addi
instruction in process B did not finish executing before the timer interrupt, so t0 was not updated
to 0x150. When the OS switches back to Process B, execution will begin at the addi instruction.

(C) (3 points) Process A begins executing. What is the address of the first instruction that raises

an exception in Process A, and what is its cause?

Addr of first instruction that raises an exception in A: ___________0xC____________

Cause for Exception (circle one): Page Fault / Unsupported Instruction / Division By
Zero

6.191 Spring 2025 - 4 of 15 - Quiz #3

(D) (5 points) Process A continues executing and eventually raises a Division By Zero exception
because of the div instruction. The OS has a unique way of handling Division By Zero
exceptions: it changes the divisor from 0 to 1 and returns control back to the same process, so
that the RISC-V processor can re-execute the div instruction. What are the values of
registers t0, t1, a0, a1, pc		(in virtual address) after the OS returns control to Process
A?

t0: __________0x100____________

t1: __________0x200____________

a0: ______________1____________

a1: ______________0____________

pc: ___________0x10____________

(E) (5 points) Below is a list of all exceptions raised during the execution of Process A and

Process B, in sequential order. The Page Fault exception is raised in Process B by the sw
t0, 0x700(x0) instruction. Fill in the rest of the diagram to indicate when the processor is
running in user mode for Process A, user mode for Process B, or supervisor mode. The first
timer interrupt is drawn as an example. Assume that no additional exceptions occur beyond
those listed in the diagram, and that timer interrupts always switch control to the other
process.

6.191 Spring 2025 - 5 of 15 - Quiz #3

Problem 2. Virtual Memory (22 points)

Using his newfound knowledge of virtual memory, Ben Bitdiddle decides to analyze the page
table characteristics of his RISC-V processor. His processor contains 2!" bytes of virtual
memory, 24-bit physical addresses, and page sizes of 4096 (2#!) bytes per page.

(A) (2 points) Calculate the following parameters relating to the size of the page table assuming a

single-level (flat) page table. Each page table entry contains a dirty bit and a resident bit.
Your final answer can be a product or exponent.

Size of page table entry (in bits): _____14_____

Number of entries in page table: _____𝟐𝟏𝟏_____

(B) (1 point) Assuming the page table is not in physical memory, what is the maximum fraction
of virtual memory that can be resident in physical memory at any given time?

Fraction of virtual memory that can be resident in physical memory:

_____	𝟏	𝒐𝒓	𝟏𝟎𝟎%_______

(C) (2 points) If we double the size of our virtual memory but keep the same page size and
physical memory size, what effect will the change have on the size of a page table entry and
on the number of entries in the page table? Use letters “a” through “e” to indicate how the
new value of the parameter compares to the old value of the parameter:

(a) doubled (b) increased by 1 (c) stays the same (d) decreased by 1 (e) halved

Width of each page table entry in bits: _____ c _____

Number of entries in the page table: _____ a _____

6.191 Spring 2025 - 6 of 15 - Quiz #3

For the rest of the problem, keep the amount of virtual memory as 𝟐𝟐𝟑 bytes.

(D) (8 points) A program has been halted right before

executing the following instructions, located at
virtual address 0x2FC.

. = 0x2FC
lw x2, 0(x6) // x6 = 0x1C5C
sw x3, 4(x7) // x7 = 0x6954

The first 8 entries of the page table are shown to the
right. The page table uses an LRU replacement
policy. Assume that all physical pages are currently
in use.

In the table below, specify which virtual address(es)
are accessed when executing these instructions. For
each virtual address, please indicate the VPN,
whether or not the access results in a page fault, the
PPN, and the physical address. If there is not enough information given to determine a given
value, write N/A. Please write all numeric values in hexadecimal.

Virtual Address VPN Page Fault
(Yes/No) PPN Physical Address

0x2FC 0x0 Yes 0xA2 0xA22FC

0x1C5C 0x1 No 0xDC 0xDCC5C

0x300 0x0 No 0xA2 0xA2300

0x6958 0x6 Yes 0xE5 0xE5958

(E) (2 points) Which virtual page(s), if any, need(s) to be written back to disk as a result of

executing the two instructions above? Provide the VPN(s) and its corresponding PPN(s).
Enter None, if no write back to disk is required. You may not need to use both lines.

VPN _____0x5_____ PPN ____0xA2______written back to disk

VPN __________ PPN __________written back to disk

(F) (2 points) Ben is curious if changing the page size will affect the number of page faults he

encounters. For each of the following page sizes, please write the number of unique VPNs
that will be accessed while running the above code.

28 bytes per page: _____4____

216 bytes per page: _____1____

 Page Table
VPN R D PPN

0 0 -- ---

1 1 0 0xDC

2 1 0 0x43

Next LRU ® 3 1 0 0xE5

4 0 -- ---

 LRU ® 5 1 1 0xA2

6 0 -- ---

7 1 1 0x10

 …

6.191 Spring 2025 - 7 of 15 - Quiz #3

For the rest of the problem, keep the original page size of 𝟐𝟏𝟐 bytes.

(G) (5 points) Consider the same RISC-V processor. We add a 4-element, fully-associative

Translation Lookaside Buffer (TLB) with an LRU replacement policy. A program running on
the processor is halted right before executing the following instruction located at address
0xF0A0:

. = 0xF0A0
lw x1, 0x20(x7) // x7 = 0x2FE8

The contents of the TLB and the first 8 entries of the page table are shown below. The page
table and TLB use an LRU replacement policy. Assume that all physical pages are currently
in use.

In the table below, specify which virtual address(es) are accessed when executing this
instruction. For each virtual address, please indicate the VPN, whether or not the access
results in a TLB Hit, whether or not the access results in a page fault, the PPN, and the
physical address. If there is not enough information given to determine a given value, please
write N/A. Please write all numerical values in hexadecimal.

Virtual
Address VPN TLB Hit

(Yes/No)
Page Fault
(Yes/No) PPN Physical

Address

0xF0A0 0xF Yes No 0x10 0x100A0

0x3008 0x3 No Yes 0xB9 0xB9008

 Page Table

VPN R D PPN

LRU ® 0 1 0 0xB9

1 0 0 ----

2 1 1 0x52

3 0 0 ----

4 1 0 0x19

5 1 1 0x89

Next LRU ® 6 1 0 0xA7

7 0 0 ----

 …

 TLB
 VPN R D PPN

LRU ® 0x70 1 0 0xA2
 0x2 1 1 0x52
 0xD3 1 1 0x65
 0xF 1 0 0x10

6.191 Spring 2025 - 8 of 15 - Quiz #3

Problem 3. Exception (mis)handler (20 points)

Mr. Chet G. Peaty has been hired as a coding assistant at your startup that makes new and
exciting RISC-V exception handlers for clients. He is generally a great programmer, but you need
to be very careful when using the code he produces, should there be any subtle bugs.

Your clients can only afford cheap RV32I processors, so they have contracted you to build an
exception handler to handle multiply instructions. A colleague of yours has already written the
multiply instruction emulator, which takes the instruction word in a0 and a pointer to the
curProc struct in a1, extracts the fields from the instruction word, reads the source registers
from the curProc struct, performs the multiplication and stores the results in the destination
register in the curProc struct (assume the correct result is placed in the destination register of
the curProc struct and that no other values are modified). Also, assume the exception handler
does not support any other types of exceptions.

Mr. Chet G. Peaty has produced the following, possibly faulty, ex_handler code, and here’s
what his code does:

• Saves user process registers and exception PC value to the curProc struct in memory.
• Reads the instruction that faulted, calls the multiply instruction emulator with it.
• Restores the user process registers and PC value from the curProc struct.
• Jumps back to user space.

/* *** USER SPACE ***
 * (code written by a client company) */

calc_volume:
 lw a1, 0x0(a0)
 lw a2, 0x4(a0)
 mul a3, a1, a2
 lw a4, 0x8(a0)
 mul a0, a3, a4
 ret

/* *** KERNEL SPACE ***
 * (code by Mr. Chet G. Peaty)
 * Exception handler entry point. */

ex_handler:
// Reg[mscratch] = a1
 csrw mscratch, a1
 // save regs to curProc
 // using mscratch
 // ...

 // save pc to curProc
 csrr a2, mepc
 lw a1, curProc
 sw a2, 0(a1)

 // read mul inst. from memory
 lw a0, 0(a2)
 call emulate_mul

 // restore pc from curProc
 lw a1, curProc
 lw a2, 0(a1)
 csrw mepc, a2

 // restore regs from curProc
 // ...

 // return to the user process
 mret

// other unrelated instructions
addi a4, a5, 4
xori a2, a3, -1

/* *** KERNEL SPACE *** */
/* Data used by exception handler */
typedef struct {
 int pc;
 int regs[31];
} ProcState;

ProcState* curProc;

/* Emulates the mul instruction. Stores
 * the result in the destination reg in
 * the ProcState. Does not modify any
 * other regs or pc in the ProcState.
 * Args (a0): Instruction to emulate
 * (a1): Pointer to a ProcState */

emulate_mul:
 // (assume this works correctly)
 // ...
 ret

6.191 Spring 2025 - 9 of 15 - Quiz #3

Recall that csrr reads from a CSR (control and status register) and csrw writes to a CSR. mret
returns from the exception handler to user mode. mret behaves just like a branch instruction
in that it gets resolved in the EXE stage.

(A) (6 points) Assume this code is running on a standard 5 stage pipelined RISC-V processor

with full bypassing and annulment. Assume that it uses lazy exception handling (just
before the commit point), and that branches are always predicted not taken and are resolved
in the EXE stage.

Please fill in the pipeline diagram until the cycle in which the csrw instruction from the
exception handler enters the IF stage. You may leave any columns blank after this. You may
ignore the shaded cells and may write a dash (--) to indicate a nop. You do not need to draw
any bypassing arrows but make sure to account for any required stalls. The first lw
instruction of the calc_volume function has been indicated for you.

 100 101 102 103 104 105 106 107 108 109 110
IF lw lw mul lw mul ret csrw

DEC lw lw mul lw mul --

EXE lw lw mul lw --

MEM lw lw mul --

WB lw lw --

(B) (2 points) Your client just sent feedback on your exception handler. They say their program

never returns from a call to the calc_volume function. Briefly explain the reason for this
behavior.

Explanation:

The handler does not add 4 to pc so it keeps jumping back to the faulting mul instruction
which keeps triggering the exception handler, and goes into this infinite loop.

(C) (5 points) Once again assuming lazy exception handling, please fill in the following pipeline

diagram starting from when the exception handler first returns to the user space code, to when
the exception handler is fetched the next time (i.e. when the csrw instruction enters the IF
stage). You may leave any columns blank after this. You may ignore the shaded cells and
may write a dash (--) to indicate a nop. You do not need to draw any bypassing arrows but
make sure to account for any required stalls. The mret instruction of the handler has been
indicated for you. Hint: Recall that with the code as currently written, the calc_volume
function never returns.

6.191 Spring 2025 - 10 of 15 - Quiz #3

 200 201 202 203 204 205 206 207 208 209 210

IF mret addi xori mul lw mul ret csrw

DEC mret addi -- mul lw mul --

EXE mret -- -- mul lw --

MEM mret -- -- mul --

WB mret -- -- --

(D) (2 points) Since Mr. Chet G. Peaty’s work is mostly correct, you decide to apply a small fix

yourself to the exception handler. Add exactly one instruction to the handler by filling in
one of the blanks below in order to fix the exception handler.

ex_handler:
 csrw mscratch, a1

 // save regs to curProc
 // using mscratch
 // ...

 // save pc to curProc
 csrr a2, mepc

 Either: addi a2, a2, 4_________
 lw a1, curProc
 sw a2, 0(a1)

 // read mul inst. from memory
 lw a0, 0(a2)

 call emulate_mul

 // restore pc from curProc
 lw a1, curProc
 lw a2, 0(a1)

 Or: addi a2, a2, 4_____________
 csrw mepc, a2

 // restore regs from curProc
 // ...

 // return to the user process

 mret

6.191 Spring 2025 - 11 of 15 - Quiz #3

(E) (5 points) In this question, assume that:
• We use a single-cycle processor with a single memory that holds both data and

instructions.
• Virtual memory is not used, so all code (including user code and exception handler) runs

on the same address space.

You ask Mr. Chet G. Peaty to simplify the exception handler and change it such that it stops
running into infinite loops. But his new handler, shown below, does not work correctly either.

// *** USER SPACE ***

// same code as above
calc_volume:
 lw a1, 0x0(a0)
 lw a2, 0x4(a0)
 mul a3, a1, a2
 lw a4, 0x8(a0)
 mul a0, a3, a4
 ret

// unrelated instructions
addi t6, t9, 4
xor s1, s2, s3

// *** KERNEL SPACE ***

ex_handler:
 csrr a0, mepc
 lw a1, nop_slide
 sw a1, 0(a0)
 mret

nop_slide:
 sll x0, x1, x2
 add x0, x3, x4
 xor x0, x5, x6

The client now uses this exception handler on a single cycle RISC-V processor and calls
calc_volume a hundred times in a loop. How many times does the exception handler get
called? Circle one and briefly explain.

Still runs into an infinite loop

Once

Twice

A hundred times

Two hundred times

Explanation:

Each call of the exception handler replaces the faulting instruction with a sll x0, x1, x2 instruction
(effectively a nop). Once both the mul instructions have been replaced, the exception handler is
never called again.

6.191 Spring 2025 - 12 of 15 - Quiz #3

Problem 4. E-Commerce Synchronization (18 points)

You and your friends want to build the world’s biggest e-commerce company, so you’ve started
6191 Mercato. In your first prototype there are two types of threads. There can be multiple
instances of each type of thread.

The first thread type is the producer, which is responsible for creating the products you plan to
sell. Your warehouse can store at most 500 products. Any product above this capacity is wasted,
so you want to avoid this. The second thread type is the sales service, which ensures that a
customer can purchase a completed product. The buy_product() function removes a product
from the warehouse and ships it to the customer.

Shared Memory:

int stored = 0

Producer Code:

if stored < 500 {

 stored = stored + 1

 create_product()

}

Sales Code:

if stored > 0 {

 buy_product()

 stored = stored - 1

}

(A) (4 points) Using the code given above, answer if the following conditions are possible:

1. You exceed your maximum capacity of 500 products.
Two machines running production code can run “stored = stored + 1” concurrently,
resulting in stored not being properly incremented to reflect both of these products being
created and stored in the warehouse.

Possible / Not Possible

2. A customer tries to buy a nonexistent product.

Two machines running sales code can run “stored = stored - 1” concurrently, resulting in
stored not being properly incremented to reflect both of these products being purchased.

 Possible / Not Possible

(B) (14 points) Customers have started complaining about receiving faulty products, so in your

second iteration of 6191 Mercato, you introduce a single Quality Assurance (QA) thread.
After a product has been created and stored in the warehouse, the QA thread must inspect the
product before a customer is able to purchase it. However, performing a QA inspection on an
individual product is costly, so you want the QA thread to operate on batches of ten products
at once.

6.191 Spring 2025 - 13 of 15 - Quiz #3

Here are the conditions your code should meet:
• You should not have more than 500 products stored in the warehouse at a time.
• There can be multiple producer and sales threads, but there is only one QA thread.
• You should perform inspections on batches of 10 products at a time.
• You should only allow a customer to purchase a product when it is actually ready for

purchase (has been created and passed an inspection).
• You should keep track of the total number of products created.
• You can use at most 4 semaphores to complete the code, and you cannot initialize your

semaphores to negative values.
• There should be no deadlocks in your code.
• You should not introduce any extra precedence constraints.
• You may only add semaphore declaration and initialization in shared memory, and

wait(sem) and signal(sem) calls in the code.

Complete the code below. If you want to call wait or signal on semaphore sem multiple times (say
n times) in a row, you can simply write “wait(sem) x n” or “signal(sem) x n”.

Shared Memory:
int count = 0 // keeps track of the total number of products created
lock = 1, capacity = 500, inspect = 0, finished = 0

Producer:

wait(capacity)

wait(lock)
count = count + 1

signal(lock)

create_product()

signal(inspect)

goto Producer

QA:

wait(inspect) x 10

inspect_10()

signal(finished) x 10

goto QA

Sales:

wait(finished)

buy_product()

signal(capacity)

goto Sales

6.191 Spring 2025 - 14 of 15 - Quiz #3

Problem 5. Cache Coherence (18 points)

Ben Bitdiddle is designing a snoopy-based, write-invalidate MSI protocol for write-back caches.
Suppose processors P1 and P2 have private snoopy caches. Both caches are initially empty.
Consider the following sequence of accesses:

I0 P1: read A
I1 P2: read B
I2 P1: write A
I3 P1: write B
I4 P2: write B
I5 P1: read B
I6 P2: read A

(A) (9 points) Assume blocks A and B do not conflict in the cache. Using the MSI protocol, fill
in the following table showing the cache line states for A and B after each access. For each
bus transaction, specify which processor initiated it and which address it is for (e.g., P1:
BusRd(A)). We provide you with the MSI cache coherence state transition diagram for
reference.

Access Shared bus transaction Processor P1’s cache Processor P2’s cache

Initial state A: I B: I A: I B: I

After P1 reads A P1: BusRd(A) A: S B: I A: I B: I

After P2 reads B P2: BusRd(B) A: S B: I A: I B: S

After P1 writes A P1: BusRdX(A) A: M B: I A: I B: S

After P1 writes B P1: BusRdX(B) A: M B: M A: I B: I

After P2 writes B P2: BusRdX(B)
P1: BusWB(B) A: M B: I A: I B: M

After P1 reads B P1: BusRd(B)
P2: BusWB(B) A: M B: S A: I B: S

After P2 reads A P2: BusRd(A)
P1: BusWB(A) A: S B: S A: S B: S

6.191 Spring 2025 - 15 of 15 - Quiz #3

(B) (9 points) Repeat part A using a MESI protocol. We provide you with the MESI cache
coherence state transition diagram for reference.

Access Shared bus transaction Processor P1’s cache Processor P2’s cache

Initial state A: I B: I A: I B: I

After P1 reads A P1: BusRd(A) A: E B: I A: I B: I

After P2 reads B P2: BusRd(B) A: E B: I A: I B: E

After P1 writes A A: M B: I A: I B: E

After P1 writes B P1: BusRdX(B) A: M B: M A: I B: I

After P2 writes B P2: BusRdX(B)
P1: BusWB(B) A: M B: I A: I B: M

After P1 reads B P1: BusRd(B)
P2: BusWB(B) A: M B: S A: I B: S

After P2 reads A P2: BusRd(A)
P1: BusWB(A) A: S B: S A: S B: S

After first access: A will be in E in P1.
After second access: B will be in E in P2.
After third access: No BusRdX required, E -> M in P1 for A.

End of Quiz 3

