
6.191 Spring 2025 - 1 of 27 - Quiz #2

M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.191 Computation Structures
Spring 2025

Quiz #2

Name

Athena login name

Score

Recitation section
o WF 10, 34-302 (Hilary) o WF 2, 34-302 (Raymond) o WF 12, 35-308 (Keshav)
o WF 11, 34-302 (Hilary) o WF 3, 34-302 (Raymond) o WF 1, 35-308 (Keshav)
o WF 12, 34-302 (Ezra) o WF 10, 35-308 (Harry) o WF 2, 8-205 (Vedantha)
o WF 1, 34-302 (Ezra) o WF 11, 35-308 (Harry) o WF 3, 8-205 (Vedantha)
 o opt-out

Please enter your name, Athena login name, and recitation section above. Enter your answers
in the spaces provided below. Show your work for potential partial credit. You can use the extra
white space and the back of each page for scratch work.

1 /19
2 /16
3 /16
4 /18
5 /12
6 /19

6.191 Spring 2025 - 2 of 27 - Quiz #2

Problem 1. Sequential Logic in Minispec (19 points)

Ben Bitdiddle is building a sequential circuit that simulates Conway’s Game of Life. This game
consists of a 2D grid of cells. Each cell can be in one of two states, dead or live. The grid starts
with some initial configuration of dead and live cells, and evolves in steps called generations. At
each step, each cell evolves based on the state of its neighbors, using three simple rules:

1. Underpopulation: A live cell with less than 2 live neighbors becomes dead.
2. Reproduction: A dead cell with exactly 3 live neighbors becomes live.
3. Overpopulation: A live cell with more than 3 live neighbors becomes dead.

If none of these rules apply, a cell does not change state. Cells have up to 8 neighbors, those that
are horizontally, vertically, or diagonally adjacent. We will simulate finite 2D grids, so cells at
the edges of the grids can have fewer neighbors.

Although this game has simple rules, it can result in surprisingly complex patterns, as illustrated
in the examples below (live cells are shaded black, dead cells are white). Each row is a
separate example.

Initial state
(generation 0) Generation 1 Generation 2 Generation 3 Generation 4

(A) (2 points) Complete the combinational function below, which computes the next value of a

cell based on its current value and the current count of neighbors that are live. We represent
the state of each cell using a 1-bit value: 1 if live, 0 if dead.

function Bit#(1) evolveCell(Bit#(1) curValue, Bit#(4) liveNeighbors);

endfunction

6.191 Spring 2025 - 3 of 27 - Quiz #2

(B) (6 points) Complete the sequential circuit on the next page, which simulates a tick of Game of
Life each clock cycle, updating the state of all cells. The module simulates a square (n-by-n)
2D grid of cells. The start input provides the initial state of the game, and the readCells
method outputs the state every cycle. You can call the evolveCell function from part A.

NOTE: Cells at the edges of the grid have fewer than 8 neighbors, so when indexing
neighbors, watch out for out-of-bounds indices.

// Sums 8 1-bit values
function Bit#(4) sum8(Bit#(1) v1, Bit#(1) v2, Bit#(1) v3, Bit#(1) v4,
 Bit#(1) v5, Bit#(1) v6, Bit#(1) v7, Bit#(1) v8);
 Bit#(2) s1 = {0, v1} + {0, v2} + {0, v3};
 Bit#(2) s2 = {0, v4} + {0, v5} + {0, v6};
 Bit#(2) s3 = {0, v7} + {0, v8};
 return {0, s1} + {0, s2} + {0, s3};
endfunction

6.191 Spring 2025 - 4 of 27 - Quiz #2

module GameOfLife#(Integer n);
 Vector#(n, Vector#(n, RegU#(Bit#(1)))) cells;

 input Maybe#(Vector#(n, Vector#(n, Bit#(1)))) start default = Invalid;

 rule tick;
 if (_____________________) begin

 // Load new input
 for (Integer i = 0; i < n; i = i + 1) begin
 for (Integer j = 0; j < n; j = j + 1) begin

 cells[i][j] <= ________________________________;
 end
 end
 end else begin
 // Evolve all cells in the 2D grid
 for (Integer i = 0; i < n; i = i + 1) begin
 for (Integer j = 0; j < n; j = j + 1) begin
 Bit#(4) liveNeighbors = sum8(

 __,

 __,

 __,

 __,

 __,

 __,

 __,

 __);

 cells[i][j] <= __________________________________;
 end
 end
 end
 endrule

 // map(map(readReg), cells) returns all the state in the correct format
 method Vector#(n, Vector#(n, Bit#(1))) readCells =
 map(map(readReg), cells);

endmodule

6.191 Spring 2025 - 5 of 27 - Quiz #2

(C) (8 points) Complete the sequential circuit below, which is a folded version of that in part B.
This circuit updates a single row of the 2D grid each cycle. Follow the directions in the
comments near each blank. You can assume that n is a power of 2. You can call the
evolveCell function from part A.

NOTE: Beware that updating row i requires the values of rows i-1, i, and i+1 for the current
generation. Make sure you don’t mix cell values from different generations!

module GameOfLifeFolded#(Integer n);
 Vector#(n, Reg#(Bit#(n))) rowRegs(0);
 Reg#(Bit#(log2(n))) curRowIdx(0);

 // Define additional state elements here

 input Maybe#(Vector#(n, Bit#(n))) start default = Invalid;

 rule tick;
 if (_______________) begin
 // Load new input
 for (Integer i = 0; i < n; i = i + 1) begin
 rowRegs[i] <= ____________________;
 end
 curRowIdx <= _____________________;
 end else begin
 // Compute new values for row of cells at index curRowIdx
 Bit#(n) rowAbove = _____________________________;

 Bit#(n) curRow = _______________________________;

 Bit#(n) rowBelow = _____________________________;

 Bit#(n) newRow = curRow;
 for (Integer j = 0; j < n; j = j+1) begin

 Bit#(4) liveNeighbors = sum8(
 (rowAbove >> 1)[j], rowAbove[j], (rowAbove << 1)[j],
 (curRow >> 1)[j], (curRow << 1)[j],
 (rowBelow >> 1)[j], rowBelow[j], (rowBelow << 1)[j]);

 newRow[j] = ____________________________________;
 end
 rowRegs[curRowIdx] <= _________________________;

 curRowIdx <= __________________________________;

 // Update any additional state elements below

 end
 endrule

 // Should return a valid output ONLY when rowRegs is fully updated
 // (i.e., rowRegs values are all from the same generation)
 // map(readReg, rowRegs) returns all the state in the correct format
 method Maybe#(Vector#(n, Bit#(n))) readCells = _______________________ ?

 Valid(map(readReg, rowRegs)) : Invalid;
endmodule

6.191 Spring 2025 - 6 of 27 - Quiz #2

(D) (3 points) For the previous implementations in parts B and C, how do the area, clock cycle
time, and throughput (in generations/second) grow with parameter n? Use order-of notation.
Assume propagation delay depends only on gate delays, ignoring fanout and wire delays.

 GameOfLife#(n) GameOfLifeFolded#(n)

Area Q(_________) Q(_________)
tCLK Q(_________) Q(_________)

Throughput (generations/s) Q(_________) Q(_________)

6.191 Spring 2025 - 7 of 27 - Quiz #2

Problem 2. Convoluted Arithmetic Pipelines (16 points)

For each of the questions below, please create a valid K-stage pipeline of the given circuit. Each
component in the circuit is annotated with its propagation delay in nanoseconds. Show your
pipelining contours and place large black circles (●) on the signal arrows to indicate the
placement of pipeline registers. Give the latency and throughput of each design, assuming ideal
registers (tPD=0, tSETUP=0). Remember that our convention is to place a pipeline register on each
output. Note that invalid pipeline diagrams will receive 0 points. Pay close attention to the
direction of the arrows.

(A) (2 points) What is the propagation delay, tPD, of the original combinational circuit shown in

part (B), prior to pipelining?

tPD (ns): __________

(B) (4 points) Show a maximum-throughput 3-stage pipeline using a minimal number of
registers. Invalid pipelines will earn 0 points. What are the latency and throughput of the
resulting circuit? In case you need them, extra copies of the circuit are available at the end of
the exam.

Latency (ns): ________

Throughput (ns-1): __________

6.191 Spring 2025 - 8 of 27 - Quiz #2

(C) (4 points) Show a maximum-throughput pipeline using a minimal number of registers.
Invalid pipelines will earn 0 points. What are the latency and throughput of the resulting
circuit? Extra copies of the circuit are provided at the end of the exam.

Latency (ns): ________

Throughput (ns-1): __________

(D) (2 points) How would the latency and throughput of your maximum throughput circuit

change if instead of using ideal registers to pipeline your circuit, you only had registers with a
(tPD=1, tSETUP=1) available. What would be the latency and throughput of the same max
throughput circuit of part C using these non-ideal registers?

Latency (ns): ________

Throughput (ns-1): __________

6.191 Spring 2025 - 9 of 27 - Quiz #2

(E) (4 points) You are now tasked with pipelining a new circuit shown below. Note that this
circuit contains an 8ns component, with input C, that has been replaced with a 2-stage
pipelined version of that 8ns module, where each stage takes 4ns. The shaded rectangles are
the registers that are already present in the 2-stage pipelined component. Show a maximum
throughput pipeline using a minimal number of registers for this new circuit. Make sure to
account for the two registers already present in the 8ns module in drawing your contours and
labeling your registers. Invalid pipelines will earn 0 points. What are the latency and
throughput of the resulting circuit? Extra copies of the circuit are provided at the end of the
exam.

Latency (ns): ________

Throughput (ns-1): __________

6.191 Spring 2025 - 10 of 27 - Quiz #2

Problem 3: (not) sorry to interrupt! (Processor Implementation) (16 points)

The 6.004 RISC-V processors you have been building feel lonely running code all by themselves.
They would like to be able to communicate with each other. Let us give them a very basic
communication capability.

We start with this generic single-cycle RISC-V processor similar to the one you have seen in
lecture.

aluVal1

pcSel

PC
Instruction

Memory
+4

Instruction
Decoder

Register File

bSel

ALU/Br

Data
Memory

wd
Se
l

rs1 rs2

imm

aluVal2

addr

rVal2rVal1

dataIn rVal2
dataOut

wd

rd

inst

pc

pc + 4

pc + 4

dataOut

aluRes

pc + 4

brTaken ? pc + imm : pc + 4
(branchTarget)

{JT[31:1],
1’b0}

aluFunc
brFunc
bSel

memFunc
wdSel
rfWen
pcSel

JT

aluFunc
brFunc

+ pc
immpc + imm

Simplified
Single Cycle

RISCV
Processor

rfWen

brTaken

0 1 2

0

1

2

0 1

memFunc memEn

6.191 Spring 2025 - 11 of 27 - Quiz #2

As a reminder, for single-cycle per instruction operation without pipelining, assume that the
memory reads (both instruction and data) are combinational, as well as reads from the
register file. The instruction decoder decodes the instruction into the following fields:

Field Description Possible Values
imm Immediate Appropriate 32-bit constant (assume proper sign

extension)
rs1, rs2 Source Registers Integers between 0 and 31
rd Destination Register Integer between 0 and 31
aluFunc ALU Function Add, Sub, And, Or, Xor, Sll, Sra, Srl
brFunc Branch Comp. Function Eq, Neq, Lt, Leq, Gt, Geq
bSel ALU/Br Operand 2 Select 0 (rVal2), 1 (imm),

2, 3, 4… (others, if extended in later parts)
memFunc Data Memory Function Lw, Sw, Lh, Lhu, Sh, Lb, Lbu, Sb
memEn Memory Enable True/False
wdSel Write Data Select 0 (pc + 4), 1 (dataOut), 2 (aluRes),

3, 4, 5… (others, if extended in later parts)
rfWen Register File Write Enable True/False
pcSel Next PC Select 0 (jumpTarget), 1 (branchTarget), 2 (pc + 4),

3, 4, 5… (others, if extended in later parts)

(A) (2 points) As a warmup, complete the table on the right with what the decoded control signals

should be for the lui x15, 0xfff00 instruction shown. Assume that the value to write
into rd is computed by adding 0 to the decoded 32-bit immediate. Use possible values
from the above table. Write “?” for don’t-care values. The table on the left is provided as an
example.

ad
d
x2
,
x1
9,
 x
5

Field Value
imm ?
rs1 19
rs2 5
rd 2
aluFunc Add
brFunc ?
bSel 0 (rVal2)
memFunc ?
memEn False
wdSel 2 (aluRes)
rfWen True
pcSel 2 (pc + 4)

lu
i
x1
5,
 0
xf
ff
00

Field Value
imm
rs1
rs2
rd
aluFunc
brFunc
bSel
memFunc
memEn
wdSel
rfWen
pcSel

(B) (4 points) First, let us add input/output capabilities to our processor. Your processor now has

a 32-bit input (called in32), the value of which comes in from a 32-bit register (called
out32). You can assume that other devices in the external world are also able to change the
value of out32 but you do not need to worry about how that happens. We will implement an
instruction called Exchange Value, which stores the value of source register rs1 (in the
processor’s register file) into out32 and stores the value of in32 into the destination register

6.191 Spring 2025 - 12 of 27 - Quiz #2

rd (in the processor’s register file). This has the effect of swapping the value currently stored
in out32 with a value in our processor.

xchgv rd, rs1; // reg[rd] <= in32; out32 <= reg[rs1];

Connect the inputs and outputs of the out32 register to appropriate spots in the following
diagram to make the xchgv instruction work. Feel free to add additional outputs from the
decoder if needed, and additional pcSel and wdSel and bSel mux values if needed. For full
credit, use minimum such additions.

aluVal1

pcSel

PC
Instruction

Memory
+4

Instruction
Decoder

Register File

bSel

ALU/Br

Data
Memory

wd
Se
l

rs1 rs2

imm

aluVal2

addr

rVal2rVal1

dataIn rVal2
dataOut

wd

rd

inst

pc

pc + 4

pc + 4

dataOut

aluRes

pc + 4

brTaken ? pc + imm : pc + 4
(branchTarget)

aluFunc
brFunc
bSel

memFunc
wdSel
rfWen
pcSel

JT

aluFunc
brFunc

rfWen

brTaken

0 1 2

0

1

2

0 1

{JT[31:1],
1’b0}

memFunc memEn

ou
t3

2

outWrData

outWrEn

+ pc
immpc + imm

in32

6.191 Spring 2025 - 13 of 27 - Quiz #2

(C) (4 points) What does the decoder need to output for the following fields when it sees an
xchgv instruction shown below? Write “?” for don’t-care values. If needed, you should list
any additional decoder outputs and additional pcSel, wdSel, and bSel mux values below.
For full credit, use minimum such additions.

xc
hg
v
x6
,
x9

Field Value
imm
rs1
rs2
rd

aluFunc
brFunc
bSel

memFunc
memEn
wdSel
rfWen
pcSel

6.191 Spring 2025 - 14 of 27 - Quiz #2

(D) (6 points) Next, let us implement a way for the external world to let the processor know that
there’s something that needs to be looked at. We have a single bit wire coming in from the
external world, called an interrupt. This wire usually stays low, but when it is asserted high
by the external world, the processor should abandon the currently executing instruction, and
instead jump to a special function called the interrupt handler. In order to achieve this, the
processor should:

a. Store the current pc value (NOT pc + 4) in register x31, so the interrupt handler
can resume execution from the current instruction after it finishes executing.

b. Jump to a special address called the interrupt vector (for simplicity, assume this is
0x4). In other words, set pc = 0x4.

On the following page, please wire the processor so that it supports interrupts. Then complete
the table below with what the decoder should output when the interrupt line is asserted?
Assume that this implementation is independent of parts B and C (i.e., the xchgv is not
being implemented). If needed, you should list any additional decoder outputs and additional
pcSel, wdSel, and bSel mux values below. For full credit, use minimum such additions.

(i
nt
er
ru
pt
 a
ss
er
te
d)

Field Value
imm
rs1
rs2
rd

aluFunc
brFunc
bSel

memFunc
memEn
wdSel
rfWen
pcSel

6.191 Spring 2025 - 15 of 27 - Quiz #2

aluVal1

pcSel

PC
Instruction

Memory
+4

Instruction
Decoder

Register File

bSel

ALU/Br

Data
Memory

wd
Se
l

rs1 rs2

imm

aluVal2

addr

rVal2rVal1

dataIn rVal2
dataOut

wd

rd

inst

pc

pc + 4

pc + 4

dataOut

aluRes

pc + 4

brTaken ? pc + imm : pc + 4
(branchTarget)

aluFunc
brFunc
bSel

memFunc
wdSel
rfWen
pcSel

JT

aluFunc
brFunc

rfWen

brTaken

0 1 2

0

1

2

0 1

{JT[31:1],
1’b0}

memFunc memEn

+ pc
immpc + imm

interrupt

6.191 Spring 2025 - 16 of 27 - Quiz #2

Problem 4: Caches (18 points)

Frodo and Sam are trying to get to Mount Doom as quickly as possible, so they decide to use a
cache to speed up their access to critical information.

(A) (1 point) Frodo and Sam would like to design a cache with an AMAT (average memory
access time) of 3 cycles. Accessing their cache takes 1 cycle, and on a miss, it takes an additional
16 cycles to retrieve the data from main memory and update the cache. What does their hit ratio
need to be in order to achieve the target AMAT?

Hit ratio = ____________

(B) (2 points) Frodo proposes using a 2-way set associative cache with a block size of 2 words.
Frodo’s cache stores a total of 8 words. Assume that addresses and words are 32 bits wide. What
address bits should be used for the word offset, byte offset, cache index, and tag field? Write
X:X if no bits are required for some field.

Tag field: A [____: ____]

Word offset: A [____: ____]

Byte offset: A [____: ____]

Cache index: A [____: ____]

(C) (1 point) Sam’s cache also stores a total of 8 words. He proposes using a direct mapped
cache with a block size of 2 words. Assume that addresses and words are 32 bits wide. What
address bits should be used for the word offset, byte offset, cache index, and tag field? Write
X:X if no bits are required for some field.

 Tag field: A [____: ____]

Word offset: A [____: ____]

Byte offset: A [____: ____]

Cache index: A [____: ____]

(D) (1 point) Assuming that Sam’s direct mapped cache uses a writeback policy, and includes
valid bits, what is the total number of bits in his cache?

____________ bits

6.191 Spring 2025 - 17 of 27 - Quiz #2

(E) (3 points) We want to analyze the performance of Frodo’s cache and Sam’s cache on the
following assembly program. Assume there is a separate data and instruction cache, and that
all words in data memory start off as 0x00000000. What is the steady state hit ratio of Frodo’s 2-
way set associative data cache?

mv x1, x0 // byte index into array
li x2, 1000 // set bound for end of array

loop:
lw x3, 0x0(x1) // access elements from array
lw x4, 0x4(x1)
lw x5, 0x14(x1)
lw x6, 0x18(x1)
lw x7, 0x0(x1)
lw x8, 0x4(x1)
lw x9, 0x14(x1)
lw x10, 0x18(x1)
addi x1, x1, 8
ble x1, x2, loop // process entries until we reach end of array

Steady state hit ratio for Frodo’s 2-way set associative cache = ____________

(F) (3 points) What is the steady state hit ratio of Sam's direct mapped data cache on the

assembly program from above?

Steady state hit ratio for Sam’s direct mapped cache = ____________

6.191 Spring 2025 - 18 of 27 - Quiz #2

(G) (3 points) Now consider a slightly different access pattern (note that the array offsets have
changed).

mv x1, x0 // byte index into array
li x2, 1000 // set bound for end of array

loop:
lw x3, 0x0(x1) // access elements from array
lw x4, 0x4(x1)
lw x5, 0x20(x1)
lw x6, 0x24(x1)
lw x7, 0x0(x1)
lw x8, 0x4(x1)
lw x9, 0x20(x1)
lw x10, 0x24(x1)
addi x1, x1, 8
ble x1, x2, loop // process entries until we reach end of array

What is the steady state hit ratio of Frodo’s 2-way set associative data cache on this new access
pattern?

Steady state hit ratio = ____________

6.191 Spring 2025 - 19 of 27 - Quiz #2

(H) (4 points) Frodo and Sam get some advice from Gandalf and decide to use his cache, which is
a 2-way set associative cache that begins with the initial state shown below.

For each of the following memory accesses, determine if it results in a hit or a miss. Consider
each request independently.

Instruction Data Returned’

If hit, what data is
returned?
If miss, enter NA.

Address to Update

If hit, enter NA.
If miss, list all addresses
that need to be updated in
memory, or enter NONE of
no updates are necessary.

lw x1, 0x61C(x0)

lw x1, 0xA34(x0)

6.191 Spring 2025 - 20 of 27 - Quiz #2

Problem 5: Software can fix everything. (12 points)

Assume our five-stage pipelined processor has no stall logic or bypass logic added, but has
speculation logic, i.e., nextPC = PC + 4, implemented, as well as annulling logic on
mispredictions for correct functionality. Also, assume that branches are resolved in the EXE
stage. For each of the code snippets below, insert NOPs so the following code run on this
pipelined processor produces the same results as when run on an unpipelined processor. For full
credit, minimize the number of NOPs executed.

Write all NOPs between any two instructions on a single line separated by semicolons. If no
NOPs are required, write “No NOPs required.”

(A) (2 points)

loop: addi x15, x10, 2

 sub x13, x16, x10

 bne x10, x0, loop

 lw x17, 0(x10)

 addi x18, x10, 7

(B) (2 points)

loop: addi x15, x10, 2

 sub x13, x15, x10

 bne x10, x0, loop

 lw x17, 0(x10)

 addi x18, x10, 7

(C) (2 points)

loop: addi x15, x10, 2

 sub x13, x16, x10

 bne x10, x0, loop

 lw x17, 0(x10)

 addi x18, x17, 7

6.191 Spring 2025 - 21 of 27 - Quiz #2

(D) (2 points)

loop: addi x15, x10, 2

 sub x13, x16, x10

 bne x13, x0, loop

 lw x17, 0(x13)

 addi x18, x10, 7

(E) (2 points)

loop: addi x15, x10, 2

 sub x13, x16, x10

 bne x10, x0, loop

 lw x17, 0(x15)

 addi x18, x10, 7

(F) (2 points)

loop: addi x15, x10, 2

 sub x13, x16, x10

 lw x17, 0(x15)

 bne x13, x0, loop

 addi x18, x17, 7

6.191 Spring 2025 - 22 of 27 - Quiz #2

Problem 6. Pipelined Processor Performance (19 points)

Ben Bitdiddle decided to use his newfound RISC-V skills to calculate Fibonacci numbers. He
writes the following loop in RISC-V assembly that calculates the 25th Fibonacci number and
stores it in register a0. Assume registers t1 and t2 each contain writable memory addresses.

 addi t0, x0, 24 // t0 = 24
 addi a0, x0, 0 // fib(0) = 0
 sw a0, 0(t1)
 addi a1, x0, 1 // fib(1) = 1
 sw a1, 0(t2)

fib: lw a0, 0(t1)
 lw a1, 0(t2)
 add a2, a0, a1 // fib(n) = fib(n-1) + fib(n-2)
 sw a1, 0(t1) // update fib(n-2) to fib(n-1)
 sw a2, 0(t2) // update fib(n-1) to fib(n)
 addi t0, t0, -1
 bnez t0, fib

 lw a0, 0(t2) // a0 <- fib(25)
 xori a4, a2, 2
 ret

Ben runs this code on a standard 5-stage RISC-V processor with full bypassing and branch
annulment. Assume that branches are always predicted not taken (i.e., we speculate that the
branch is not taken) and that branch decisions are made in the EXE stage. Assume that the loop
repeats many times and it’s currently in the middle of its execution.

(A) (7 points) Fill in the 5-stage pipeline diagram below for cycles 100-112, assuming that at

cycle 100 the lw, a0, 0(t1) instruction is fetched. Assume the loop runs for many
iterations. Draw arrows indicating each use of bypassing. Ignore cells shaded in gray.

Cycle 100 101 102 103 104 105 106 107 108 109 110 111 112

IF lw

DEC

EXE

MEM

WB

6.191 Spring 2025 - 23 of 27 - Quiz #2

How many cycles does each iteration of the loop take in steady state? For each loop iteration,
how many cycles are wasted due to stalls? How many are wasted due to annulments?

Number of cycles per loop iteration: _________________

Number of cycles per loop iteration wasted due to stalls: _________________

Number of cycles per loop iteration wasted due to annulments: _________________

Ben’s 5-stage full-bypassing processor has the following propagation delays for each piece of
combinational logic:

What is the minimum clock period for this processor assuming ideal registers with (tPD=0,
tSETUP=0)? How long does 1 iteration of the loop take?

Processor minimum clock period (ns): __________________

Time to execute 1 iteration of the loop (ns): __________________

Alice wants to help Ben speed up his pipeline. She notices that memory operations are a
significant component of the above code, so she tells Ben that merging the EXE and MEM stages
will make each loop execute faster because fewer cycles per loop iteration will be used. Ben is
skeptical and decides to check this for himself.

Ben creates a 4-stage pipeline (IF, DEC, EXE/MEM, WB), merging the EXE and MEM stages
into one pipeline stage. Assume that branches are always predicted not taken (i.e., we speculate
that the branch is not taken) and that branch decisions are made in the EXE/MEM stage. Assume
that the loop repeats many times and it’s currently in the middle of its execution.

IF 2 ns
DEC 4 ns
EXE 7 ns
MEM 6 ns
WB 3 ns
BYP 1 ns

6.191 Spring 2025 - 24 of 27 - Quiz #2

(B) (7 points) Fill in the 4-stage pipeline diagram below for cycles 100-112, assuming that at

cycle 100 the lw, a0, 0(t1) instruction is fetched. Assume the loop runs for many
iterations. Draw arrows indicating each use of bypassing. Ignore cells shaded in gray.

Cycle 100 101 102 103 104 105 106 107 108 109 110 111 112

IF lw

DEC

EXE/
MEM

WB

How many cycles does each iteration of the loop take in steady state? For each loop iteration,
how many cycles are wasted due to stalls? How many are wasted due to annulments?

Number of cycles per loop iteration: _________________

Number of cycles per loop iteration wasted due to stalls: _________________

Number of cycles per loop iteration wasted due to annulments: _________________

Was Alice correct? What is the minimum clock period for this processor assuming ideal
registers with (tPD=0, tSETUP=0)? How long does 1 iteration of the loop take?

Processor minimum clock period (ns): _________________

Time to execute 1 iteration of the loop (ns): _________________

IF 2 ns
DEC 4 ns
EXE 7 ns
MEM 6 ns
WB 3 ns
BYP 1 ns

6.191 Spring 2025 - 25 of 27 - Quiz #2

While testing Alice’s theory, Ben noticed that the Fib loop could be rewritten without using the
sw and lw instructions. Thinking this will greatly speed up his pipeline, Ben decides to
implement this change.

(C) (5 points) To improve performance, rewrite the Fib code without using sw and lw

instructions. For full credit, minimize the number of cycles per loop iteration.

 addi t0, zero, 24 // t0 = 24
 addi a0, zero, 0 // fib(0) = 0
 addi a1, zero, 1 // fib(1) = 1

fib: __

 __

 __

 __

 __

 __

 __

 mv a0, _______ // a0 <- fib(25)
 xori a4, a2, 2 // Unrelated future instructions

 ret

Ben runs this modified code on the same 5-stage RISC-V processor from part A. How
many cycles per iteration in steady state does the modified code achieve? How long does 1
iteration of the loop take?

Note: You do not need to fill in a pipeline diagram to answer this question, but if you need
one, there are blank diagrams at the end of the quiz.

Number of cycles per loop iteration: __________________

Time to execute 1 iteration of the loop: __________________

6.191 Spring 2025 - 26 of 27 - Quiz #2

Extra Diagram for problems 2C or 2D:

Extra Diagram for problem 2E:

6.191 Spring 2025 - 27 of 27 - Quiz #2

Extra diagrams for problem 6:

Cycle 100 101 102 103 104 105 106 107 108 109 110 111 112

IF

DEC

EXE

MEM

WB

Cycle 100 101 102 103 104 105 106 107 108 109 110 111 112

IF

DEC

EXE/
MEM

WB

Cycle 100 101 102 103 104 105 106 107 108 109 110 111 112

IF

DEC

EXE

MEM

WB

End of Quiz 2

