

6.191 Spring 2024 - 1 of 20 - Quiz #2 Solutions

M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.191 Computation Structures
Spring 2024

Quiz #2

Name
Solutions

Athena login name

Score

Recitation section
o WF 10, 34-302 (Wendy) o WF 2, 34-302 (Catherine) o opt-out
o WF 11, 34-302 (Wendy) o WF 3, 34-302 (Catherine)
o WF 12, 34-302 (Adrianna) o WF 12, 35-308 (Shabnam)
o WF 1, 34-302 (Adrianna) o WF 1, 35-308 (Shabnam)

Please enter your name, Athena login name, and recitation section above. Enter your answers
in the spaces provided below. Show your work for potential partial credit. You can use the extra
white space and the back of each page for scratch work.

1 /16
2 /16
3 /14
4 /18
5 /18
6 /18

6.191 Spring 2024 - 2 of 20 - Quiz #2 Solutions

Problem 1. Sequential Circuits in Minispec (16 points)

You are given the following Minispec sequential module:

typedef struct {Bit#(16) a; Bit#(16) b;} Args;

module Comp;

Reg#(Bit#(16)) x(1);
Reg#(Bit#(16)) y(0);

input Maybe#(Args) in;

rule step;

if (isValid(in)) begin
let args = fromMaybe(?, in);
x <= args.a;
y <= args.b;

end else if (x != 0) begin
if (x >= y) begin

x <= x - y;
end else begin

x <= y;
y <= x;

end
end

endrule

method Maybe#(Bit#(16)) result = (x == 0)? Valid(y) : Invalid;

endmodule

(A) (6 points) Fill in the table below with the value of each variable at each cycle.

 1 2 3 4 5 6 7 8

in Invalid Valid(Args{
a:6 ,b:4}) Invalid Invalid Invalid Invalid Invalid Invalid

x 1 1 6 2 4 2 0 0

y 0 0 4 4 2 2 2 2

result Invalid Invalid Invalid Invalid Invalid Invalid Valid(2) Valid(2)

6.191 Spring 2024 - 3 of 20 - Quiz #2 Solutions

Now that you have warmed up, you are asked to design a parameterized matrix multiplication
module for matrix product AxB where A and B are square matrices, such that the number of
columns and rows in each matrix is n. Matrix multiplication is defined as demonstrated in the
following diagram:

𝑐!,#= ∑ 𝑎!,$ ∗ 𝑏$,#%&'

$()

Your module can accept 2 inputs at a time, row and column. row and column are Maybe
Vectors of n 32-bit elements. When both row and column inputs are valid, then your module
should compute the dot product of these two vectors and assign the result to the correct location
of temp_matrix (which is indexed by row_counter and col_counter) in the code below.
After your module computes all the matrix product elements, your module should output a valid
result, the matrix product C. Assume that all addition (+) and multiplication (*) operations in
your matrix multiply use 32-bit inputs and produce 32-bit outputs.

It is important to note that you cannot assume that both row and column	inputs will be
valid every cycle.

Your module will receive the pairs of inputs in the following order and you can assume when a
valid input pair is received, it follows the following pattern:

Input Pair Row Column
0 0 0
1 0 1
2 0 2
…
n-1 0 n-1
n 1 0
n+1 1 1
…

6.191 Spring 2024 - 4 of 20 - Quiz #2 Solutions

(B) (8 points) Complete the Minispec skeleton below to implement matrix multiplication for
n by n matrix inputs.

module MatrixMultiply#(Integer n);

 input Maybe#(Vector#(n, Bit#(32)) row;
 input Maybe#(Vector#(n, Bit#(32)) column;

Reg#(Bit#(log2(n))) row_counter(0);
Reg#(Bit#(log2(n))) col_counter(0);
Reg#(Bit#(1)) done(0);

 Vector#(Vector#(n, Reg#(Bit#(32))) temp_matrix = unpack(0);

 rule tick;

 if (row_counter == (n-1) && col_counter == (n-1)

 && isValid(row) && isValid(column)) done <= 1;
 else done <= 0;

 if(isValid(row) && isValid(column)) begin

 Vector#(n, Bit#(32)) row_in = ___fromMaybe(?, row)______;

 Vector#(n, Bit#(32)) col_in = ___fromMaybe(?, column)___;

 Bit#(32) total_sum = 0;
 for(Integer k = 0; k < n; k = k + 1) begin

 __total_sum = total_sum + row_in[k]*col_in[k]_____;

 end

temp_matrix[row_counter][col_counter] <= __total_sum_____;

if (col_counter == n – 1) begin

 col_counter <= ________0______________;

 if (row_counter == n – 1) begin

 row_counter <= ________0______________;

 end else __row_counter <= row_counter + 1_____;

 end else __ col_counter <= col_counter + 1______;

 end

 endrule

6.191 Spring 2024 - 5 of 20 - Quiz #2 Solutions

(C) (2 points) Complete the result method which returns a valid matrix C once it has been fully
computed and returns Invalid otherwise.

 method Maybe#(Vector#(n, Vector#(n, Bit#(32)))) result;

 Vector#(n, Vector#(n, Bit#(32))) ret = unpack(0);

 for (Integer i = 0; i < n; i = i + 1) begin

 for(Integer j = 0; j < n; j = j + 1) begin

 ret[i][j] = __temp_matrix[i][j]___;
 end
 end

 if (__done == 1__) return ____Valid(ret)_____;

 else return ___Invalid_______;

 endmethod

endmodule

6.191 Spring 2024 - 6 of 20 - Quiz #2 Solutions

Problem 2. Arithmetic Pipelines (16 points)

Octavian the octopus accidentally fried his sister's Kelp-o-
Meter, but luckily, he was able to buy a working
replacement. However, the new device's throughput is
much lower than the original’s, so Octavian asks you to
help him pipeline it. A Kelp-o-Meter (KELP for short) has
two inputs, X and Y, and two outputs, K and L.

For each of the questions below, please create a valid k-stage pipeline of the given circuit. Each
component in the circuit is annotated with its propagation delay in nanoseconds. Show your
pipelining contours and place large black circles (●) on the signal arrows to indicate the
placement of pipeline registers. Give the latency and throughput of each design, assuming ideal
registers (tPD=0, tSETUP=0). Remember that our convention is to place a pipeline register on each
output.

(A) (1 point) Based on the circuit shown in part (B), what is the propagation delay of the whole

KELP circuit as-is, without pipelining?

tPD (ns): ___29_____

(B) (3 points) Show the maximum-throughput 2-stage pipeline using a minimal number of

registers. What are the latency and throughput of the resulting circuit? Pay close attention to
the direction of each arrow. Show your pipeline contours and each pipeline register. In
case you need them, extra copies of the circuit are available at the end of the quiz.

Latency (ns): ____30______

Throughput (ns-1): ____1/15______

6.191 Spring 2024 - 7 of 20 - Quiz #2 Solutions

(C) (4 points) Show the maximum-throughput 3-stage pipeline using a minimal number of
registers. What are the latency and throughput of the resulting circuit? Show your pipeline
contours and each pipeline register. In case you need them, extra copies of the circuit are
available at the end of the quiz.

Latency (ns): ___33_______

Throughput (ns-1): ___1/11_______

 (D) (4 points) Show the maximum-throughput pipeline using a minimal number of registers.

What are the latency and throughput of the resulting circuit? Show your pipeline contours
and each pipeline register. In case you need them, extra copies of the circuit are available at
the end of the quiz.

Latency (ns): ___32_______

Throughput (ns-1): ___1/8_______

6.191 Spring 2024 - 8 of 20 - Quiz #2 Solutions

(E) Octavian came up with a brilliant birthday present for his sister: an add-on module that
connects to the outputs of her new Kelp-o-Meter. He is considering three different models,
CRAB, STAR, and FISH, which have the same functionality, but differ in throughput and
number of pipeline stages (given in the table below).

Add-on Module Throughput (ns-1) Pipeline Stages

CRAB 1/6 4
STAR 1/8 2
FISH 1/12 1

(i) (2 points) Octavian thinks maximizing throughput is most important. Which versions of

the pipelined KELP module and add-on module should Octavian choose, and what are
the resulting latency and throughput? If two combinations have identical throughput,
choose the one with better latency.

Module KELP (circle one):

2-stage pipeline 3-stage pipeline Maximum-throughput pipeline

Add-on Module (circle one):

CRAB (T = 1/6) STAR (T = 1/8) FISH (T = 1/12)

Latency (ns): ____48______

Throughput (ns-1): ____1/8______

(ii) (2 points) After thinking for a bit, Octavian starts worrying about the latency of the

combined modules. To minimize latency, which versions of the pipelined KELP module
and add-on module should Octavian choose, and what are the resulting latency and
throughput? If two combinations have identical latency, choose the one with better
throughput.

Module KELP (circle one):

2-stage pipeline 3-stage pipeline Maximum-throughput pipeline

Add-on Module (circle one):

 CRAB (T = 1/6) STAR (T = 1/8) FISH (T = 1/12)

Latency (ns): ____45______

Throughput (ns-1): ____1/15______

6.191 Spring 2024 - 9 of 20 - Quiz #2 Solutions

Problem 3. Processor Implementation (14 points)

Reggie Ster has written a program in RISC-V assembly that repeatedly calculates an address and
jumps to that address. Reggie’s program has this code pattern repeated many times:

slli x3, x3, 2
add x2, x4, x3
jalr x1, 0(x2)

Reggie notices that the offset for the jalr instruction is always 0 for his program. To make his
code more efficient, Reggie decides to combine these 3 instructions into a single calculate and
jump instruction that can be executed in one cycle. This is the new instruction Reggie wants to
add to the RISC-V ISA:

calcj rd, rs1, rs2

The calcj instruction computes an address based on the values in registers rs1 and rs2, then
jumps to that address. The instruction also stores pc+4 to the rd register. The behavior of this
new instruction is summarized in the code below:

reg[rd] <= pc + 4

JT = reg[rs1] + (reg[rs2]<<2)
pc <= {JT[31:1], 1’b0}

Reggie has chosen to encode the calcj instruction in the following way:

31...25 24...20 19...15 14...12 11...7 6...0
0000001 rs2 rs1 101 rd 0111011

(A) (1 point) Encode the following instruction as a 32-bit binary word. Provide your encoding in

hexadecimal notation.

calcj x1, x4, x3

0000|001 0|0011 |0010|0 101 |0000|1 011|1011
0x023250BB

Encoding in hexadecimal 0x: ____023250BB________

6.191 Spring 2024 - 10 of 20 - Quiz #2 Solutions

Reggie introduces a new <<2 module (highlighted below) to the processor diagram from lecture.
This module left-shifts the second register value by two, with the shifted output labeled as
rVal2shift.

Please also note that the logic for computing branches and jumps is provided in bold in the
diagram below. Help Reggie modify the processor implementation below to support the new
calculate and jump instruction.

(B) (2 points) For each of the following signals, determine whether the mux being controlled by

that signal needs an extra input to accommodate the new instruction. If so, indicate the name
of the signal that needs to be added as an input to the mux. If not, indicate which existing
value of the mux control signal is required to make the instruction work properly.

BSEL: Needs new input (circle one)? YES NO

New input/Existing control signal: __ rVal2shift ___

WDSEL: Needs new input (circle one)? YES NO

New input/Existing control signal: __PC+4 (0)__

6.191 Spring 2024 - 11 of 20 - Quiz #2 Solutions

(C) (3 points) To support the calcj instruction, Reggie decides he wants to add an input 4 to the
PCSEL mux and connect aluResult to this new input signal (i.e., Reggie replaces the
question mark, at input 4 of the PCSEL mux, with aluResult). The decoder will set PCSEL
= 4 for the calcj instruction.

Is there a problem with Reggie’s approach? If yes, explain the issue and suggest what Reggie
should do instead to update the PC register correctly. If no, explain why Reggie’s approach
works.

Is Reggie’s approach problematic (circle one)? YES NO

Explanation:
If the result of the addition is odd, then aluResult will give a PC that is not half-word aligned.
Instead of creating a new input and connecting aluResult, Reggie should use the existing
input 2 {JT[31:1], 1’b0} (which is essentially aluResult with the last bit cleared)

(D) (5 points) Decide for each of the following control signals what their values should be when

executing the calcj instruction. If the value of the signal doesn’t matter, then put N/A. The
possible values for each signal are provided below.

AluFunc: Add, Sub, And, Or, Xor, Slt, Sltu, Sll, Srl, Sra

BrFunc: Eq, Neq, Lt, Ltu, Ge, Geu

MemFunc: Lw, Lh, Lhu, Lb, Lbu, Sw, Sh, Sb

MemEnable: True, False

WERF: True, False

AluFunc: _____Add__________

BrFunc: _____N/A__________

MemFunc: ___N/A____ MemFunc: __Lw, Lh, Lhu, Lb, Lbu_

 OR
 MemEnable: __False__ MemEnable: ________True________

WERF: _____True____

6.191 Spring 2024 - 12 of 20 - Quiz #2 Solutions

(E) (3 points) Reggie modifies his program slightly so that the repeated code block in his program
becomes:

slli x3, x3, 2
add x2, x4, x3
jalr x1, 4(x2)

Reggie notices that the offset for the jalr instruction is now always 4 for his program. He
wants to make another calculate and jump four instruction, which would have the following
code implementation:

reg[rd] <= pc + 4

JT = (reg[rs1] + (reg[rs2]<<2)) + 4
pc <= {JT[31:1], 1’b0}

Could we modify only the control signals of the processor above (with the additional shifter
module) to support this instruction? Explain your answer.

 Could we implement a calculate and jump four instruction (circle one)? YES NO

Explanation:
The processor with an additional shifter module allows us to support instructions that require
a 2-bit left shift and one additional ALU operation. The calculate and jump four instruction
would require a 2-bit left shift and 2 additions. This is not possible to implement in our
processor without an additional adder module.

6.191 Spring 2024 - 13 of 20 - Quiz #2 Solutions

Problem 4. Caches (18 points)

Assume that addresses and data words are 32 bits. Consider a 4-way set associative cache with
64 sets and a block size of 4.

(A) (2 points) Which address bits should the cache use for the cache index, tag field, and block

offset. Write [X : X] if no bits are used.

Address bits for byte offset: A[1 : 0]

Address bits for cache index: A[9 : 4]

Address bits for tag field: A[31 : 10]

Address bits for block offset: A[3 : 2]

Now consider a 2-way set associative cache with 4 sets and a block size of 4. You will use this
architecture for parts (B) – (E).

(B) (3 points) How will the following cache parameters change in this new cache relative to the

cache in part (A)? Please circle the best answer. If ‘Other’, write the change.

of cache index bits:
UNCHANGED … +1 … -1 … +2 … -2 … CAN’T TELL….Other:___-4___

of tag field bits:

UNCHANGED … +1 … -1 … +2 … -2 … CAN’T TELL….Other___4___

of block offset bits:
UNCHANGED … +1 … -1 … +2 … -2 … CAN’T TELL….Other:________

(C) (8 points) Now analyze the performance of this cache (2-way set associative, 4 sets, block

size of 4 words) using the following assembly program, which iterates through array A (base
address 0x40) and stores the result of 4*A[i] into array B (base address 0x80).

// x1 = 0 (loop index i)
// x2 = 4 (number of elements in array A)
. = 0x0 // The following code starts at address 0x0
loop:
 slli x3, x1, 2 // convert to byte offset
 lw x4, 0x40(x3) // load value from A[i]
 slli x4, x4, 2 // x4 = 4 * A[i]
 sw x4, 0x80(x3) // store 4 * A[i] into B[i]
 addi x1, x1, 1 // increment index
 blt x1, x2, loop // loop 4 times

 unimp // halt, all done

6.191 Spring 2024 - 14 of 20 - Quiz #2 Solutions

Assume the cache is empty before execution of this code (i.e., all valid bits are 0). Assume that
the cache uses a least-recently used (LRU) replacement policy, and that all cache lines in Way 0
are currently the least-recently used. Fill in, or update, all the known values of the LRU bit, the
dirty bit (D), the valid bit (V), the tag, and the data words after one loop iteration (after
executing the blt instruction for the first time). For word fields, fill them in with the opcode if
they are instructions (e.g., blt) or fill them in with the array element if they are data (e.g., A[0]).
You may assume that if V = 0 then D = 0.

// x1 = 0 (loop index i)
// x2 = 4 (number of elements in array A)
. = 0x0 // The following code starts at address 0x0
loop:
 slli x3, x1, 2 // convert to byte offset
 lw x4, 0x40(x3) // load value from A[i]
 slli x4, x4, 2 // x4 = 4 * A[i]
 sw x4, 0x80(x3) // store 4 * A[i] into B[i]
 addi x1, x1, 1 // increment index
 blt x1, x2, loop // loop 4 times

 unimp // halt, all done

Way 0 (After one loop iteration)

Index V D Tag Word 3 Word 2 Word 1 Word 0

0 1 0 0x0 sw slli lw slli

1 1 0 0x0 unimp blt addi

2 0 0

3 0 0

Way 1 (After one loop iteration)

Index V D Tag Word 3 Word 2 Word 1 Word 0

0 1 1 0x2 B[3] B[2] B[1] B[0]

1 0 0

2 0 0

3 0 0

Index LRU after one
loop iteration

0 0
1 1
2 0
3 0

6.191 Spring 2024 - 15 of 20 - Quiz #2 Solutions

(D) (4 points) Fill out the table below with the number of instruction hits, instruction misses, data
hits, and data misses for each of the four iterations of the loop.

 Instructions Data

 Hits Misses Hits Misses
First loop
iteration 4 2 0 2

Second loop
iteration 6 0 0 2

Third loop
iteration 6 0 0 2

Fourth loop
iteration 6 0 0 2

(E) (1 point) What is the hit ratio for the execution of the four loop iterations (Note: do not

include execution of the unimp instruction)? You may leave your answer as a fraction.

Hit Ratio: ____22/32____

6.191 Spring 2024 - 16 of 20 - Quiz #2 Solutions

Problem 5. Pipelined Processors (18 points)

Ben Bitdiddle writes the following loop in RISC-V assembly to multiply elements of an array by
3. The array is of size n and is stored in memory beginning at address 0x500.

// a0 = n = 100
// a1 = 0 = loop index i

loop:
slli a2, a1, 2 // multiply index by 4
lw a3, 0x500(a2)
slli a4, a3, 1
add a4, a4, a3
sw a4, 0x500(a2) // a[i] = 3 * a[i]
addi a1, a1, 1 // increment loop index i
blt a1, a0, loop
ori a0, a2, 2 // some instructions following the loop
xori a2, a0, 4
and a3, a2, a1

Ben runs this on a 4-stage pipeline (IF, DEC, EXE/MEM, WB). In this pipeline:

• The EXE and MEM stages have been merged into one pipeline stage.
• The result of a lw operation is available at the beginning of the WB stage.
• Branches are predicted not taken.
• Branches and jumps are resolved in the EXE/MEM stage.
• Full bypassing is implemented.

(A) (7 points) Fill in the pipeline diagram below for cycles 100-112, assuming that at cycle 100

the slli a2, a1, 2 instruction is fetched. Assume the loop runs for many iterations.
Draw arrows indicating each use of bypassing. Ignore cells shaded in gray.

(B) (2 points) How many cycles does each iteration of the loop take? For each loop iteration, how

many cycles are wasted due to stalls? How many are wasted due to annulments?

Number of cycles per loop iteration: ________10__________

Number of cycles per loop iteration wasted due to stalls: ________1__________

Number of cycles per loop iteration wasted due to annulments: ________2__________

 100 101 102 103 104 105 106 107 108 109 110 111 112

IF slli lw slli add add sw addi blt ori xori slli lw slli

DEC slli lw slli slli add sw addi blt ori NOP slli lw

EXE/
MEM slli lw NOP

slli add sw addi blt NOP NOP slli

WB slli lw NOP slli add sw addi blt NOP NOP

6.191 Spring 2024 - 17 of 20 - Quiz #2 Solutions

(C) (4 points) Suppose Ben now modifies his processor so that branches are always predicted to
be taken. Assume that everything else about the processor remains unchanged. Fill in the
pipeline diagrams below assuming that at cycle 200 the addi a1, a1, 1 is fetched, and
the branch is taken. Draw arrows indicating each use of bypassing. Ignore cells shaded in
gray.

(D) (2 points) How many cycles does the execution of the loop take when branches are predicted
to be taken? For each loop iteration, how many cycles are wasted due to stalls? How many
are wasted due to annulments?

Number of cycles per loop iteration: _________8_________

Number of cycles per loop iteration wasted due to stalls: _________1_________

Number of cycles per loop iteration wasted due to annulments: _________0_________

(E) (3 points) Ben decides to continue using the version of his processor that predicts that

branches are always taken. However, for cost saving reasons, he needs to remove one of the
bypass paths from his processor. Should he choose to remove the EXE/MEM to DEC bypass
or the WB to DEC bypass? With the selected bypass path removed, how many cycles does
each iteration of the loop take? For each loop iteration, how many cycles are wasted due to
stalls? How many are wasted due to annulments?

Bypass path to remove (circle one): EXE/MEM to DEC WB to DEC

Num cycles per loop iteration after removing bypass path:

_________10_________

Num cycles per loop iteration wasted due to stalls after removing bypass path:
 _________3_________

Num cycles per loop iteration wasted due to annulments after removing bypass path:

_________0_________

 200 201 202 203 204 205 206 207 208 209

IF addi blt slli lw slli add add sw addi blt

DEC addi blt slli lw slli slli add sw addi

EXE/
MEM addi blt slli lw NOP slli add sw

WB addi blt slli lw NOP slli add

6.191 Spring 2024 - 18 of 20 - Quiz #2 Solutions

Problem 6. Pipelined Processor Performance (18 points)

The following loop sums up the elements of an array:

loop: lw a1, 0(a2)
 add a0, a1, a0
 addi a2, a2, 4
 blt a2, a3, loop
 xor a1, a4, a5 // some code after the loop
 sub sp, sp, a6
 ret

(A) (3 points) Assume a standard 5-stage RISC-V pipelined processor with full bypassing. In
steady state, how many cycles does each iteration of the loop take? Note that all branches are
predicted not taken.

NOTE: You do not need to fill in a pipeline diagram to answer this question, but if you need
one, there are blank diagrams at the end of the quiz.

Instructions per loop iteration: ______4______

Cycles per loop iteration lost to stalls: ______2______

Cycles per loop iteration lost to annulments: ______2______

Cycles per loop iteration: ______8______

(B) (2 points) Reorder the instructions in the loop to improve performance. How many cycles per

iteration does your code achieve?

loop: ___ lw a1, 0(a2)________________

 ____ addi a2, a2, 4_______________

 ____ add a0, a1, a0_______________

 blt a2, a3, loop

(There are also 6-cycle solutions if you reorder across loop iterations, but the code for those is
more complex.)

Cycles per loop iteration with reoredered code: ______7______

6.191 Spring 2024 - 19 of 20 - Quiz #2 Solutions

Ben Bitdiddle notices that it’s common for code to have load instructions for values that are used
by a single ALU instruction, like the lw and add instruction pair in the previous loop. He
proposes to change the RISC-V ISA to support ALU instructions where the first operand comes
from memory instead of a register. These instructions have the form:

 op rd, (rs1), rs2: Reg[rd] ß Mem[Reg[rs1]] op Reg[rs2]

With this ISA change, the previous loop can be rewritten as follows, saving one instruction:

loop: add a0, (a2), a0
 addi a2, a2, 4
 blt a2, a3, loop
 xor a1, a4, a5
 sub sp, sp, a6
 ret

To support this new instruction type, Ben
implements the 5-stage pipeline shown here.
The key difference with the standard 5-stage
pipeline is that the MEM stage comes before
the EXE stage, not after. This allows these
new ALU instructions to load one of their
operands from memory.

As in the classic 5-stage pipeline, branches
and jumps are resolved in the EXE stage (but
note that this is now the fourth stage in the
pipeline, not the third one).

(C) (6 points) Assume that this pipeline implements the same bypass paths as the classic 5-stage

pipeline: values can be bypassed from the MEM, EXE, and WB stages to the DEC stage.
Analyze the performance of the loop above. Fill out the pipeline diagram below for the first
10 cycles and calculate the number of cycles this processor takes to execute one iteration of
the above loop. Fill in any stalled/annulled stages with NOPs and clearly show all uses of the
bypass paths using arrows. Ignore cells shaded in gray.

Cycle 1 2 3 4 5 6 7 8 9 10

IF add addi blt xor xor sub ret add addi blt

DEC add addi blt blt xor sub NOP add addi

MEM add addi NOP blt xor NOP NOP add

EXE add addi NOP blt NOP NOP NOP

WB add addi NOP blt NOP NOP

Cycles per loop iteration: ______7_______

IF

DEC

MEM

EXE

WB

PC

Instruction
Cache

Decode Register
File

Data
Cache

Execute

Register
File

+4

ANNUL

ANNUL

6.191 Spring 2024 - 20 of 20 - Quiz #2 Solutions

(D) (4 points) Let’s consider adding even more bypass paths: assume that values can be bypassed
from the MEM, EXE, and WB stages to the DEC stage (like before), and from the EXE
stage to the MEM stage. Bypassing from EXE to MEM lets us have back-to-back
dependences among ALU instructions without stalls, like in the classic pipeline, even though
this pipeline has an extra stage (MEM) between DEC and EXE. The bypass paths to MEM
work as follows: if the instruction in DEC reads a value that will be produced by an ALU
instruction that is currently in MEM, the instruction in DEC does not stall and instead relies
on the EXEàMEM bypass path to provide this value on the next cycle.

Analyze the performance of the loop above. Fill out the pipeline diagram below for the first
10 cycles and calculate the number of cycles this processor takes to execute one iteration of
the loop. Fill in any stalled/annulled stages with NOPs and clearly show all uses of the bypass
paths using arrows. Ignore cells shaded in gray.

Cycle 1 2 3 4 5 6 7 8 9 10

IF add addi blt xor sub ret add addi blt xor

DEC add addi blt xor sub NOP add addi blt

MEM add addi blt xor NOP NOP add addi

EXE add addi blt NOP NOP NOP add

WB add addi blt NOP NOP NOP

Cycles per loop iteration: ______6_______

(E) (3 points) In this pipeline, branches and jumps are resolved in a later stage than memory

accesses. Is it safe to use speculation to resolve control hazards? If so, explain why.
Otherwise, give a code sequence that produces incorrect behavior on mis-speculation and
explain why the code sequence misbehaves. Include any assumptions you are making in your
explanation.

This pipeline still produces correct execution, but by a hair. The key constraint is that
instructions cannot modify architectural state until they are non-speculative. Because memory
is placed before branch resolution, the worst-case sequence is a branch or jump followed by a
store instruction. In this case, the store instruction can be annulled while it is in MEM and
before it writes to the data cache. If EXE happened one cycle later, this would not be
possible.

Also accepting solutions that say it doesn’t work if you assume that the sw can alter state in
the MEM stage before being annulled.

END OF QUIZ 2!

