
Sequential Logic in Minispec 
 

Sequential logic is digital logic with state, i.e., memory. Unlike combinational circuits, where outputs depend only on the current 
inputs, in sequential circuits outputs are a function of both the current inputs and the state. 

 
The most common type of sequential circuits are single-clock synchronous sequential circuits. In these circuits, state is maintained 
in registers that all share the same periodic clock signal. Registers update their contents simultaneously, at the rising edge of the 
clock. This allows discretizing time into cycles and abstracting sequential circuits as finite state machines (FSMs). 

 
In lecture, we have seen how to describe the behavior of FSMs using truth tables or state-transition diagrams, and how to 
implement them as sequential circuits with registers (flip-flops) and logic gates. 

 
In this tutorial, you will learn how to design sequential circuits in Minispec, which are implemented as modules. We will cover the 
following topics: 

 
1. Modules implement FSMs  
2. Introduction to modules by example  
3. Module syntax and elements  
4. Registers  
5. Semantics of hierarchically nested modules  
6. Synthesis of modules into sequential circuits  
7. System functions for testing and debugging  
8. Building good module interfaces 

 
This tutorial is structured to get you started quickly: Section 2 presents a sequence of simple examples that illustrate the main 
points of describing, composing, synthesizing, and simulating sequential circuits. The later sections expand on the finer points of 
each topic, presenting the syntax and semantics of modules in detail. 

 
This tutorial assumes you have completed the combinational logic tutorial, as the syntax builds on that of combinational circuits. 

 
This tutorial uses interactive examples. You can execute each code snippet (cell) by pressing Shift+Enter. The executable 
examples consist of modules and one of two special commands, called magics: %%sim to simulate a module and %%synth to 
synthesize it into a circuit. (These magics are not part of the Minispec language, but separate commands integrated in Jupyter; see 
Section 13 of the Minispec reference (https://6191.mit.edu/_static/fall23/resources/references/minispec_reference.pdf ).   

 

1. Modules implement FSMs 
 

Minispec modules implement FSMs. The figure below (left) shows the canonical representation of an FSM. On each cycle, the FSM 
stores a particular state (in registers) and takes some inputs. Combinational logic within the FSM uses the state and inputs to 
compute the next state of the FSM and its outputs for the current cycle. At the end of the cycle (i.e., in the next rising clock edge), 
registers update their values, placing the FSM into the next state. 
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Minispec modules have four key elements that correspond to the components of FSMs: 

 
1. Submodules, which can be registers or other user-defined modules to allow composition of modules.  
2. Methods, which implement combinational logic to produce outputs given some input arguments and the current state. 



3. Rules, which implement combinational logic to produce the next state given some external inputs and the current state.  
4. Inputs, which represent external inputs controlled by the enclosing module. 

 
The figures above show two modules: a basic module with registers but no other submodules (middle figure), and a general 
module that includes submodules other than registers (right figure). Comparing the left and middle figures, we see that the key 
difference between modules and FSMs is the distinction between inputs and method arguments: whereas combinational logic in 
FSMs can use any input to produce both the next state and the output, module methods use arguments to produce outputs, 
separate from the inputs used by rules. As we will see later, this distinction makes modules easy to compose: whereas building an 
FSM by composing smaller FSMs can cause combinational cycles, a module can be composed from other submodules without 
combinational cycles, regardless of the implementation of the submodules. 

 
2. Introduction to modules by example 

 
To introduce the main syntax elements of modules, consider the example below, which implements a two-bit counter.  

 
In [ ]: 1 module TwoBitCounter;  

2 Reg#(Bit#(2)) count(0);  
3 method Bit#(2) getCount = count;  
4input Bool enable;  
5rule increment;  
6 if (enable)  
7 count <= count + 1;  
8 endrule  
9  endmodule 

 
There is a lot of new syntax packed in this example. Let's go line by line: 

 
Line 1 starts the definition of a new module type called TwoBitCounter . This module can then be instantiated as a 
submodule in other modules or used as the top-level module (i.e., synthesized on its own). Like type names, module names 
must be uppercase.  
Line 2 instantiates a submodule, a 2-bit register named count . This submodule is a 2-bit register because its type is Reg# 
(Bit#(2)) . In general, Reg#(T) denotes a register of values of type T . Also, Reg#(T) takes its initial value as an 
argument, 0 in this case. Arguments are specified in parentheses after the submodule name.  
Line 3 declares a method named getCount that returns the current value of the count register. In general, writing the 
name of a register (e.g., count ) yields its current value. Also, in general methods can have arguments, though in this case 
getCount doesn't have any.  
Line 4 declares a Bool input called enable .   
Finally, lines 5-8 declare a rule called increment . Rules specify the combinational logic in charge of updating state, i.e., 
implementing side-effects. Each rule automatically executes (i.e., fires) every cycle. The increment rule increments count 
if the enable input is True . To write to the count register, the rule uses a register assignment operator <= . Register 
assignments have some crucial differences from normal variable assignments (using = ), mainly in that the assigned value is 
not immediately visible, as registers are updated at the end of the cycle. We will see all the differences in detail later.   

Note how the TwoBitCounter module is a particular example of the basic module figure in Section 1 above: it uses a register but 
no other submodules. Before continuing, can you manually synthesize the entire circuit from the code above? Try implementing the 
rule and method blobs of combinational logic. 

 
Synthesizing modules: You can automatically synthesize the TwoBitCounter module into a synchronous sequential circuit:  

 
In [ ]: 1 

 
 
%%synth TwoBitCounter -v -l extended 
 

 
This synthesized module has all the elements you'd expect in a 2-bit counter FSM: 

 
The two bits of state ( count ) are held in two D flip-flops. Both flip-flops are driven by the same clock signal ( CLK ).   
The getCount method translates to the two-bit output getCount , which is simply the 2-bit value stored in both flip-flops.   
There is a single-bit enable input the corresponds to our Bool input enable .   
Finally, there is some combinational logic that computes the next value of the output: if the reset signal RST_N input is 0, both 
flip-flops take 0 as their next value (implementing the initial value 0 of count ); and if RST_N is 1 (meaning the circuit is not 
being reset to the initial state), then the flip-flops take either their current value (if enable is False ) or the incremented 
value of count (if enable is True ).   

Note how the FSM above has two inputs that are implicit in the Minispec code: the clock ( CLK ) and reset ( RST_N ) signals. 
The Minispec tools automatically connect all registers to CLK and generate initialization logic for all registers using RST_N . 



Composing modules: Now that we have a two-bit counter module, we can use it in other modules. For example, the  
FourBitCounter module below implements a four-bit counter:  

 
In [ ]: 1 module FourBitCounter;  

2 TwoBitCounter lower;  
3TwoBitCounter upper;  
4  
5method Bit#(4) getCount;  
6return {upper.getCount, lower.getCount};  
7 endmethod  
8  
9input Bool enable;  
10  
11 rule increment;  
12 lower.enable = enable;  
13 upper.enable = enable && (lower.getCount == 3);  
14 endrule  
15 endmodule 

 
In this example, FourBitCounter consists of two TwoBitCounter submodules, but does not directly instantiate any register 
submodules (it is an example of the general module figure in Section 1 above). Instead, FourBitCounter 's increment rule 
sets the enable inputs of its lower and upper submodules: it increments lower every time enable is true, and increments 
upper when enable is true and lower has reached its maximum value (i.e., it's about to wrap around to zero). With this logic, 
the concatenation of the upper and lower counts is a 4-bit counter that grows by 1 on every cycle in which enable is True . 

 
To set the input of a submodule, the increment rule simply assigns it a value (e.g., lower.enable = enable; sets 
the enable input of the lower submodule). 

 
In general, rules are in charge of both updating registers and setting input values. Only rules can have these side-effects; 
methods, like functions, have no side effects, and they may only read registers or call other methods from submodules. 

 
Finally, when modules are composed hierarchically like in this case, the execution semantics are very simple: the system behaves 
as if, on each cycle, rules fire sequentially, outside-in. Specifically, in this case, FourBitCounter 's increment rule fires, 
setting the inputs for its submodules. Then, the increment rules for the lower and upper submodules fire. Though more 
complex types of composition are possible, in 6.004 we will always use hierarchical composition. 

 
Simulating and debugging modules: Last but not least, modules can be simulated over multiple cycles to analyze and test their 
behavior. You can simulate a module with the %%sim magic, like so: 

 
%%sim FourBitCounter 

 
However, if you tried to run this, you would get no useful output, for two reasons. First, FourBitCounter has an input that we are 
not setting to anything. Second, simulating a module drives its internal state, but does not print any outputs. 

 
To solve both problems, we can write a testbench module that (1) instantiates the module we want to test as a submodule, (2) 
feeds it a sequence of inputs, (3) prints outputs or quantities of interest, and (4) terminates the simulation when all tests are done. 

 
The example below shows a test for the four-bit counter. This example uses two system functions, $display to print output and 
$finish to terminate the simulation. Section 7 describes these system functions in detail. 



In [ ]: 1 module FourBitCounterTest;  
2 FourBitCounter counter;  
3 Reg#(Bit#(6)) cycle(0);  
4  
5rule test;  
6// Increment only on odd cycles  
7 counter.enable = (cycle[0] == 1); 8 

 
9// Print the current count  
10 $display("[cycle %d] counter.getCount = %d", cycle, counter.getCount);  

11   
12 // Test that the count is what we expect  
13 if (counter.getCount != cycle[4:1]) begin  
14 $display("FAILED: Wrong count");  
15 $finish;  
16 end  
17  
18 // Increment the cycle counter, and terminate after a full loop  
19 cycle <= cycle + 1;  
20 if (cycle >= 32) begin  
21 $display("PASSED");  
22 $finish;  
23 end  
24 endrule  
25 endmodule 

 
 

We can then simulate the testbench module:  
 
In [ ]: 1 

 
 
%%sim FourBitCounterTest 
 

 
These examples cover the main aspects of modules. The remainder of the tutorial goes in more depth into each of these aspects 
and presents additional examples. 

 
3. Module syntax and elements 

 
Definition: Modules are defined using the following syntax: 

 
module ModType [#(param1, paramK)][(Type1 arg1, ..., TypeN 
argN)]; <submodule, method, input, rule, constant decls> 

endmodule 
 

Each definition specifies a new module type, ModType , which can then be instantiated as a submodule in other modules or as the 
top-level module. 

 
Modules meant to be submodules can have optional module arguments, arg_i , with types Type_i . These arguments can be 
constant values (e.g., used to set initial values), or other modules. 

 
Modules can be parametric. Parametric module definitions use exactly the same syntax as parametric functions, with parameters 
specified after the module name. 

 
The body of the module can declare submodules, methods, inputs, rules, and constants, whose syntax is explained below. 

 
Example: n-bit Counter with initial value. The example below generalizes the previous counter modules to show module 
parameters and arguments in action. The Counter#(n) module below is built by composing smaller counters; the base case 
Counter#(1) stops the recursion. Counter#(n) takes a single Bit#(n) argument, the counter's initial value. 



In [ ]: 1 // Base case  
2 module Counter#(1)(Bit#(1) initialValue);  
3 Reg#(Bit#(1)) count(initialValue);  
4method Bit#(1) getCount = count;  
5input Bool enable;  
6rule increment;  
7if (enable) count <= ~count;  // that's one-bit +1  
8 endrule  
9  endmodule  
10  
11 module Counter#(Integer n)(Bit#(n) initialValue);  
12 Counter#(n/2) lower(initialValue[n/2-1:0]);  
13 Counter#(n-n/2) upper(initialValue[n-1:n/2]);  
14 method Bit#(n) getCount = {upper.getCount, lower.getCount};  
15 input Bool enable;  
16 rule increment;  
17 lower.enable = enable;  
18 upper.enable = enable && (lower.getCount == -1); // -1 == all ones, about to wrap around  
19 endrule  
20 endmodule  
21  
22 // Simple test for a 7-bit counter with a non-zero initial value  
23 module CounterTest;  
24 Counter#(7) counter(29);  
25 Reg#(Bit#(6)) cycle(0);  
26 rule test;  
27 counter.enable = (cycle[0] == 1);  
28 $display("[cycle %d] counter.getCount = %d", cycle, counter.getCount);  
29 cycle <= cycle + 1;  
30 if (cycle >= 8) $finish;  
31 endrule  
32 endmodule  
33  
34 %%sim CounterTest 

 
 

Submodule declarations 
 

Submodule declarations use the syntax: 
 

SubmodType submodName [(arg1, ..., argN)]; 
 

where SubmodType is the type of the submodule being instantiated, submodName is the name of this specific submodule 
instance, and arg_i are the (optional) arguments to the submodule. 

 
Methods 

 
Methods are nearly identical to functions: they specify combinational logic that produces an output and have no side effects. They 
can call methods in submodules or read register values, but they cannot set the inputs of submodules or write to any register 
(these are side effects, which only rules can have). 

 
Methods use a syntax nearly identical to functions: 

 
method RetType mname(Type1 arg1, ..., TypeN argN);  

stmt1  
...  
stmtN  

endmethod 
 

where mname is the method’s name; RetType is the type of its return value; arg_i are the names of its arguments, with types  
Type_i ; and stmt_i are statements. Methods also support the same shorthand syntax as functions: 

 
method RetType mname(Type1 arg1, ..., TypeN argN) = expr; 

 
Methods may have no arguments. Unlike functions, methods cannot be parametric (i.e., they cannot define their own parameters, 
though they can use the parameters of its module, as shown in the Counter#(n) example above). 



Use: A method may be called only from the methods or rules of its enclosing module. The syntax for a method call is 
submoduleName.methodName(arg1, ..., argN) . A module cannot call its own methods. 

 
Example: Methods with arguments. The examples we have seen so far do not use methods with arguments. The example below 
shows an alternative Counter#(n) implementation with a method, countIs , that returns whether the current count matches a 
particular value, passed as an argument to the method. Note how the synthesized circuit has inputs for both the enable and the 
countIs argument, countIs_x .  

 
In [ ]: 1 module Counter#(Integer n);  

2 Reg#(Bit#(n)) count(0);  
3 method Bit#(n) getCount = count;  
4 method Bool countIs(Bit#(n) x) = count == x;  
5input Bool enable;  
6rule increment;  
7if (enable) count <= count + 1;  
8 endrule  
9  endmodule  
10  
11 // synth options chosen to reduce number of gates  
12 %%synth Counter#(2) -v -l extended -d 1000 

 
 

Inputs 
 

Inputs specify external inputs that are controlled by the rule(s) of an enclosing module. Their syntax is: 
 

input Type name [default = defaultExpr]; 
 

where Type is the input’s name, name is its name, and the optional defaultExpr specifies a default value for the input. 
 

Use: Inputs can be read within the module just like variables, but cannot be set. 
 

Inputs can be set within a rule of the enclosing module, with syntax submoduleName.inputName = expr;, like a normal assignment. 
If the input does not have a default value, the enclosing module must set the input every cycle. If the input has a default value, then 
setting the input is optional. 

 
An input can only be set once. Trying to assign to the input multiple times within a cycle will cause a compiler error. 

 
Example: Inputs with default values. The example below implements an n-bit delta counter, which can be incremented by a 
variable amount every cycle. The delta input specifies this increment. By default, delta is 0 . This way, modules instantiating 
DeltaCounter need not set delta every cycle. (See what happens with DeltaCounterTest when you remove the default 
value of delta ).  

 
In [ ]: 1 module DeltaCounter#(Integer n);  

2 Reg#(Bit#(n)) count(0);  
3 method Bit#(n) getCount = count;  
4  
5 input Bit#(n) delta default = 0; 6 

 
7rule tick;  
8count <= count + delta;  
9 endrule  
10  endmodule  
11  
12  module DeltaCounterTest;  
13 DeltaCounter#(8) counter;  
14 Reg#(Bit#(8)) cycle(0);  
15 rule test;  
16 if (cycle[0] == 1)  
17 counter.delta = cycle;  
18 $display("[cycle %d] counter.getCount = %d", cycle, counter.getCount);  
19 cycle <= cycle + 1;  
20 if (cycle >= 8) $finish;  
21 endrule  
22 endmodule  
23  
24 %%sim DeltaCounterTest 



Rules 
 

Rules specify combinational logic that updates the state of the module, i.e., they implement side-effects. Specifically, rules set the 
values to be written in registers at the end of the cycle and the inputs of submodules. Rules use the following syntax: 

 
rule ruleName;  

stmt1  
...  
stmtN  

endrule 
 

Rules fire (i.e., automatically execute) every cycle. A module may have multiple rules, but these rules cannot have overlapping 
side-effects (i.e., they must update disjoint registers and inputs). Any such overlap will cause a compiler error. 

 
4. Registers 

 
Registers are the most basic module. Reg#(T) stores a value of type T . T can be any type that can be represented as bits. 

 
Declaration: Modules can declare registers with the usual syntax for submodules. Reg#(T) takes an initial value, so its 
declaration is Reg#(T) regName(initialValue); . 

 
Initial values allow registers to start set to known values. This requires some additional reset circuitry, as we saw in the 
FourBitCounter example. If it’s not necessary to have an initial value, this circuitry can be avoided by using RegU#(T) , a 
variant of Reg#(T) that starts on an unknown value. RegU#(T) declarations do not take an initial value: RegU#(T) regName; . 

 
Reads: Registers can be read from anywhere in the module. Simply using the name of the register yields its value. 

 
Writes: Registers can be written from rules using the following syntax: 

 
regName <= expr; 

 
where regName is the register’s name and expr is the value to be be written to it. Note how register writes are not normal 
assignments: they use <= instead of = and have different semantics in two key aspects: 

 
1. Register writes do not take place until the end of the cycle. Reading a register value in the same rule and after a register write 

statement will yield the value of the register in the current cycle, not the value set by the register write.  
2. Registers can be written only once. In each cycle, a register may be written at most once. A rule that writes the same register 

multiple times will cause a compiler error. Two rules that may write to the same register will cause a compiler error. Registers 
need not be written every cycle; if not written, a register retains its previous value. 

 
Example: Accumulator. The example below shows a multi-cycle accumulator that illustrates the use of Reg and RegU and 
register assignment semantics. Accumulator takes a stream of input values, one per cycle, and stores their running sum. 
Together with each value, the accumulator takes a command ( cmd ), which can be either Add or Set . Add causes the current 
value to be added to the running sum, while Set discards the running sum and sets the accumulator to the given value. 

 
To avoid the reset logic for the runningSum register, the accumulator uses a RegU to store it, plus a Bool register valid 
initialized to False . On the first cycle, valid transitions from False to True and runningSum always captures the first 
value given, discarding its (garbage) initial value. Finally, note how register writes do not take place until the end of the cycle: in 
cycle 0, the tick rule writes valid <= True; , but the expression (!valid || in.cmd == Set) in the next line still 
sees valid is set to False. 



In [ ]: 1 typedef enum { Add, Set } AccumulatorCmd;  
2 typedef struct {  
3 AccumulatorCmd cmd;  
4 Bit#(16) 
value; 5 } 
AccumulatorInput; 6 
7  module Accumulator;  
8 Reg#(Bool) valid(False);  
9 RegU#(Bit#(16)) runningSum;  
10 input AccumulatorInput in default = AccumulatorInput { cmd: Add, value : 0 };  
11 method Bool isValid = valid;  
12 method Bit#(16) sum = runningSum;  
13 rule tick;  
14 valid <= True;  
15 runningSum <= (!valid || in.cmd == Set)? in.value : runningSum + in.value;  
16 endrule  
17 endmodule  
18  
19 module AccumulatorTest;  
20 Accumulator acc;  
21 Reg#(Bit#(16)) cycle(0);  
22 rule test;  
23 if (cycle[0] == 0)  
24 acc.in = AccumulatorInput { cmd: Add, value : cycle + 10 };  
25 else if (cycle[2:1] == 2'b11)  
26 acc.in = AccumulatorInput { cmd: Set, value : cycle };  
27 $display("[cycle %d] acc.sum = %d acc.isValid = %d", cycle, acc.sum, acc.isValid);  
28 cycle <= cycle + 1;  
29 if (cycle >= 16) $finish;  
30 endrule  
31 endmodule  
32  
33 %%sim AccumulatorTest 

 
 
 

5. Semantics of hierarchically nested modules 
 

Assume we impose two conditions on a design. First, modules follow a strict hierarchy, i.e., each module interacts only with the 
submodules it instantiates. Second, no method reads module inputs. 

 
Under these conditions, Minispec guarantees that there are no combinational cycles and gives very simple semantics: the system 
behaves as if, on each cycle, rules fire sequentially, outside-in: first, the rule in the top-level module fires, then the rules in all its 
submodules, and so on. 

 
Because each module's rule calls methods in its submodules and sets the inputs to its submodules, this order guarantees that all 
inputs are set by the time a rule executes. Moreover, the effects of rules in submodules cannot be observed by their enclosing 
modules: data flows inside-out only through methods, and data flows outside-in through inputs and rules. 

 
In 6.004, we will only use and require you to understand module composition under the above conditions, i.e., Minispec's simple 
module semantics. For advanced designs, it may be helpful to break these conditions; if you're curious, Section 9.4 of the Minispec 
reference (https://6191.mit.edu/_static/fall23/resources/references/minispec_reference.pdf ) goes into more details.    
Why use modules instead of composing FSMs directly? In Section 1, we said that modules add structure over FSMs by splitting 
module arguments and inputs, and that this makes hierarchical composition easy. Specifically, the separation between rule inputs 
and method arguments allows modules to instantiate and use arbitrary submodules while avoiding combinational cycles, i.e., 
ensuring that combinational logic remains acyclic. 

 
It is useful to understand why this is the case, because this is the key conceptual difference between Minispec and other hardware 
description languages (HDLs). To see why rules and methods enable composition while avoiding combinational cycles, consider a 
different approach where we composed different FSMs directly, with the combinational logic in a module setting the inputs and 
using the outputs of its submodules (Verilog and other HDLs follow this approach). 

 
Unfortunately, this can cause combinational loops like the one shown in the figure to the right: the outer module sets s.in = 
!s.out; and submodule s has a combinational path from in to out , causing a combinational feedback loop. We cannot 
prevent loops by disallowing modules from setting submodule inputs based on submodule outputs, because this is often 



necessary. For example, a module may need to check whether a submodule is ready 
to start processing a new value (e.g., through a ready output) before giving it the value 
through an input. 

  
Thus, composing FSMs this way requires the specific combination of a module and its 
submodules to yield acyclic combinational logic. But this condition is brittle, requiring 
discipline from the designer, and it is implementation-dependent: changing the 
implementation of a submodule may introduce a combinational cycle in a previously 
correct circuit. Therefore, this is a poor abstraction. 

 
Methods avoid these problems: with methods, input-to-output combinational paths in a 
module happen only between method arguments and method outputs. Moreover, 
method calls force the arguments to be available before the output is available. Thus, a 
module cannot perform a sequence of method calls to its submodules that results in a 
cycle. As a result, modules can safely call methods from submodules without knowing 
their implementation details; only their interface matters. 

 

6. Synthesis of modules into sequential circuits 
 

Sequential synthesis is a straightforward extension of combinational synthesis. 
 

As we have seen before, sequential circuits have two implicit inputs that are not 
present in Minispec code: the clock signal (CLK) and the reset signal (RST or RST_N). 

  
Registers are synthesized as collections of 1-bit D flip-flops (DFFs). All registers use 
CLK as their clock. Registers with an initial value (i.e., Reg#(T) ) include reset circuitry 
that sets its value to the initial value when the circuit powers up. Because flip-flops hold 
an arbitrary value when first powered, this is accomplished by the RST signal: the RST 
signal is 1 for a few cycles after power-up, letting registers write their initial values with 
the reset circuitry shown in the figure to the right. Registers with no initial value (i.e., 
RegU#(T) ) have no reset circuitry. RST_N is simply an inverted (negated) RST  
signal: it is 0 for a few cycles after power-up. Depending on the standard cell library, RST or RST_N will be used. 

 
Registers are always written to by a single rule, but may not be updated every cycle. When not updated every cycle, the register 
includes write-enable circuitry to optionally retain its old value, as shown in the figure above. 

 
Inputs without a default value are simply wires. Inputs with a default value translate to a multiplexer that chooses between the 
input value, if any is set, and the default value, if none is set. 

 
Rules are synthesized as normal combinational logic. They produce the values for all registers and inputs they set. When rules 
conditionally set registers or inputs, they also generate the corresponding enable signals so that, when not set, registers retain 
their old value and inputs use their default value. 

 
Methods are synthesized like functions. A method can be called multiple times. If the method has no arguments (i.e., it always 
returns the same value on a given cycle), all callers share the same output value. If the method has arguments, each call 
instantiates a new copy of the method. 

 

7. System functions for testing and debugging 
 

As we have seen before, testbench modules use special functions, called system functions, to control simulation and print data. 
System functions are not synthesizable to hardware, and are only used when simulating a module. All system functions begin with 
a dollar sign ( $ ). System functions may only be used within module rules, as they have side effects. Calls to a system function 
from a function or method will cause a compiler error. 

 
The two main system functions are $finish and $display . 

 
$finish terminates the simulation. It takes no arguments. 

 
$display prints strings to standard output. It takes a variable number of arguments, which can be strings or other values. 

 
As shown in the example below, every value that is not a string will be interpreted as an n-bit value and printed as a decimal 
number by default. To print numbers in other bases, $display can use the same syntax as the printf function in C or the print 
function in Python, using format strings with %b for binary, %d for decimal, and %h or %x for hexadecimal values. 

Example synthesized register 
with reset and enable circuits. 

Example showing how 
composing FSMs by wiring 

their inputs and outputs can 
introduce a combinational 

cycle. 



Nevertheless, displaying complex types like structs as one long number is inconvenient. The fshow function automatically 
formats complex types, as shown in the example below. fshow can be used on values of any type. 

 
 

In [ ]: 1 typedef struct { Bit#(8) red; Bit#(8) green; Bit#(8) blue; } 
Pixel; 2  
3 module DisplayExample;  
4rule test;  
5 $display("Hello world!"); // Prints "Hello world!" 
6 $display("Hello", " ", "world!"); // Prints "Hello world!"  
7  
8// Printing non-string values  
9Bit#(8) x = 42;  
10 $display("x in decimal is ", x);  // Prints "x in decimal is 42"  

11   
12 // Using printf-style formatting  
13 $display("0b%b == %d == 0h%h", x, x, x); // Prints "0b00101010 == 42 == 0x2a"  

14   
15 // Using fshow  
16 Pixel cyan = Pixel{ red : 0, green : 255, blue : 255 };  
17 $display(cyan); // Prints " 65535" 

18 $display(fshow(cyan));   // Prints "Pixel { red: 'h00, green: 'hff, blue: 'hff }"  
19   
20 $finish;  
21 endrule  
22 endmodule  
23  
24 %%sim DisplayExample 

 

 

8. Building good module interfaces 
 

So far, we have seen how to write sequential circuits with a given set of methods and inputs, i.e., a pre-specified interface. 
However, there are many ways to design a module's interface, i.e., how it interacts with the outside world. A good interface will 
make the module simple to implement and easy to use, whereas a bad interface can make the module brittle and introduce 
frequent errors. 

 
Group related inputs and outputs 

 
In this section, we will see some design strategies and introduce a new type that will keep your modules simple and make them 
easy to use correctly by other modules. All we will see is several manifestations of the following basic principle: minimize the 
number of inputs and methods by grouping related inputs and outputs. 

 
In other words, any time your module may need to take several inputs together, or produce multiple related outputs that the 
module's user should access together, those different pieces of data should be grouped into a single input or method, instead of 
transferred using several inputs and methods. This will often require using composite types like structs for inputs and method 
outputs. 

 
We have already seen this principle at work! In the accumulator example from Section 4, the Accumulator module used a single 
input to convey both an input and a command: 

 
typedef enum { Add, Set } AccumulatorCmd;  
typedef struct {  

AccumulatorCmd cmd;  
Bit#(16) value;  

} AccumulatorInput; 
 

module Accumulator;  
Reg#(Bool) valid(False);  
RegU#(Bit#(16)) runningSum; 

 
input AccumulatorInput in default = AccumulatorInput { cmd: Add, value : 0 }; 

 
method Bool isValid = valid;  
method Bit#(16) sum = runningSum;  
... 



This approach requires declaring a custom AccumulatorStruct . But the benefits are well worth it! Consider the 
alternative approach where we define two inputs instead: 

 
input Cmd inCmd default = Add;  
input Bit#(16) inValue default = 0; 

 
This alternative approach would make Accumulator harder to use: the module user could forget to set one input, or set inputs 
on different cycles, or misread the defaults, introducing errors. In this case, we want to do something specific with the value we're 
passing, so the command and the value should be grouped together. 

 
Though Accumulator is using the principle of grouping related inputs and methods, it is not using it enough: it has two methods 
for two pieces of related information, the running sum and whether the sum is valid. This is error-prone, because the module's user 
could use the output from the sum() method without checking the output of isValid() , . Instead, we should have a single 
method that returns both whether the sum is valid, and, if so, its value. 

 
Because this is a very common need, Minispec already includes a built-in type that represents a valid or invalid value: Maybe#  
(T) . Let's see how it works. 

 
The Maybe#(T) type 

 
Maybe#(T) represents an optional value of type T . A Maybe#(T) can be either Valid if it holds a value of type T , or 
Invalid if it does not hold a value. Maybe#(T) is especially useful for modules, which often do not have valid inputs or outputs 
every cycle. 

 
Creating Maybe#(T) values: Given a value v of type T , Valid(v) is a valid Maybe#(T) that holds v . The literal Invalid 
can be assigned to any Maybe#(T) variable to make it invalid. 

 
Checking for validity: The built-in function isValid returns True if its argument is Valid , and False if it is Invalid . 

 
Unpacking Maybe#(T)’s optional value: The built-in function fromMaybe allows extracting the value of a valid Maybe value. Its 
signature is T fromMaybe(T defaultValue, Maybe#(T) x) . If x is Valid , fromMaybe returns x ’s value; if x is 
Invalid , fromMaybe returns defaultValue . 

 
Example: Accumulator using Maybe#(T). The example below rewrites the Accumulator module to use Maybe types:  

 
In [ ]: 1 typedef enum { Add, Set } AccumulatorCmd;  

2 typedef struct {  
3 AccumulatorCmd cmd;  
4 Bit#(16) 
value; 5 } 
AccumulatorInput; 6 
7  module AccumulatorMaybe;  
8 Reg#(Maybe#(Bit#(16))) runningSum(Invalid);  
9 input AccumulatorInput in default = AccumulatorInput { cmd: Add, value : 0 };  
10method Maybe#(Bit#(16)) sum = runningSum;  
11rule tick;  
12runningSum <= (!isValid(runningSum) || in.cmd == Set)?  
13 Valid(in.value) :  
14 Valid(fromMaybe(?, runningSum) + in.value);  
15 endrule  
16 endmodule  
17  
18 module AccumulatorMaybeTest;  
19 AccumulatorMaybe acc;  
20 Reg#(Bit#(16)) cycle(0);  
21 rule test;  
22 if (cycle[0] == 0)  
23 acc.in = AccumulatorInput { cmd: Add, value : cycle + 10 };  
24 else if (cycle[2:1] == 2'b11)  
25 acc.in = AccumulatorInput { cmd: Set, value : cycle };  
26 $display("[cycle %d] acc.sum = ", cycle, fshow(acc.sum));  
27 cycle <= cycle + 1;  
28 if (cycle >= 16) $finish;  
29 endrule  
30 endmodule  
31  
32 %%sim AccumulatorMaybeTest 



Note how the module now has a single method that returns a valid or invalid output. This makes it nearly impossible for the module 
user to use an invalid output: to get to the value returned by sum , the user must first unpack it using fromMaybe . 

 
Multi-cycle computations 

 
It is common for sequential circuits to implement computations that take multiple cycles: the circuit takes an input at a given cycle, 
then spends multiple cycles, potentially a variable number of them, producing the output, which it then makes available through an 
output. 

 
Maybe types are a helpful way to implement the inputs and outputs for these modules in a robust way. Let's see this though an 
example. 

 
Example: GCD. We want to design a circuit to find the greatest common divisor of two numbers, a and b, using Euclid's algorithm.  
The code below shows a Python implementation of Euclid's algorithm: 

 
def gcd(a, b):  

x = a  
y = b  
while x != 0:  

if x >= y:  
x = x - y # subtract  

else:  
(x, y) = (y, x) # swap  

# when x is 0, y has the 

gcd return y 
 

The module below implements a sequential circuit that performs one iteration of the while loop above each cycle, either 
subtracting or swapping x and y . Thus, this circuit takes a variable number of cycles to produce an output (note how there's no 
efficient way to do this with combinational logic).  

 
In [ ]:   1 typedef struct {Bit#(16) a; Bit#(16) b;} GCDArgs; 

2  
3 module GCD;  
4 Reg#(Bit#(16)) x(1);  
5 Reg#(Bit#(16)) y(0);  
6  
7 input Maybe#(GCDArgs) in default = Invalid; 8 

 
9rule gcd;  
10 if (isValid(in)) begin  
11 let args = fromMaybe(?, in);  
12 x <= args.a;  
13 y <= args.b;  
14 end else if (x != 0) begin  
15 if (x >= y) begin  
16 x <= x - y;  // subtract 

17 end else begin  
18 // swap (note assignments don't take effect till next cycle) 
19 x <= y; 
20 y <= x; 

21 end  
22 end  
23 endrule  
24  
25 method Maybe#(Bit#(16)) result =  
26 (x == 0)? Valid(y) : Invalid;  
27 endmodule 

 
Note how the GCD module uses a single Maybe input and a single Maybe output. If the input is valid, the circuit begins a single 
computation by loading the arguments a and b into x and y. Otherwise, the circuit performs one step of Euclid's algorithm until x 
reaches 0, at which point y has the result. The module outputs this result safely by using a Maybe type: the result method 
returns Valid(y) only when y has a valid result, and Invalid otherwise. 

 
This circuit is straightforward to use: the enclosing module starts a GCD computation by setting a Valid input, then waits until the 
output becomes Valid . At that point, the enclosing module can set a new Valid input to begin the next computation. For 
example: 



In [ ]: 1 module GCDTest;  
2 GCD gcd;  
3 Reg#(Bit#(16)) cycle(0);  
4 Reg#(Bit#(4)) numResults(0);  
5rule test;  
6cycle <= cycle + 1;  
7if (cycle == 0) begin  
8 let args = GCDArgs{a: 10, b: 15};  
9 gcd.in = Valid(args);  
10 $display("[cycle %d] Initial GCD arguments: %d, %d", cycle, args.a, args.b);  
11 end else if (isValid(gcd.result)) begin  
12 let result = fromMaybe(?, gcd.result);  
13 $display("[cycle %d] GCD result: %d", cycle, result);  
14  
15 numResults <= numResults + 1;  
16 if (numResults >= 4) begin  
17 $display("[cycle %d] Finished", cycle); 
18 $finish; 

19 end else begin  
20 let args = GCDArgs{a: cycle, b: 2 * cycle + 9}; 
21 $display("[cycle %d] Next GCD arguments: %d, %d", cycle, args.a, args.b); 
22 gcd.in = Valid(args); 

23 end  
24 end  
25 endrule  
26 endmodule  
27  
28 %%sim GCDTest 

 
Note how the GCD module takes a variable number of cycles to process each input (from 6 to 45-29=16). 

 
In GCD, the values of x and y are sufficient to determine the state of the circuit (e.g., whether it has a valid input). In other cases, it 
may be necessary to have additional registers to track the state (e.g., how many steps are there to completion). But regardless of 
the internal implementation, Maybe inputs and outputs can always be used to build a simple interface for modules performing multi-
cycle computations. 

 
 

Conclusion 
 

We have seen how Minispec makes sequential circuits composable by describing them as modules. Modules can be composed 
hierarchically without introducing combinational cycles, and their composition yields simple semantics: the system behaves as if 
rules fire sequentially, outside-in. 

 
Although these semantics make modules easy to understand, it is important to remember that the system is intrinsically parallel, 
with potentially many computations and register assignments happening concurrently in a single cycle. As with combinational logic, 
you should never forget that you're describing hardware, not software. 

 
This tutorial omits some of the finer details of the Minispec language; to dig deeper, please check the Minispec reference 
(Minispec reference (https://6191.mit.edu/_static/fall23/resources/references/minispec_reference.pdf ).  

 


