
Combinational Logic in Minispec 
 
Combinational circuits, also known as Boolean circuits, are a basic building block of digital logic. A combinational circuit has digital inputs 
and outputs; each output is a Boolean function of its current inputs (i.e., the circuit has no memory or state); and each output is guaranteed 
to reach a stable digital value after a bounded propagation delay from the time at which the inputs reach valid digital values. 
 
In lecture, we have seen how to describe the behavior of combinational circuits using Boolean formulas or truth tables, and how to 
implement these circuits using gates. 
 
In this tutorial, you will learn how to design combinational circuits in Minispec. We will cover the following topics: 
 

1. The Bool type and Boolean operations  
2. Functions  
3. Manual synthesis of functions into combinational circuits  
4. The Bit#(n) type and Bit operations  
5. Types and type inference  
6. Conditional expressions  
7. Automatic synthesis of functions into combinational circuits  
8. Parametric functions and Integers  
9. User-defined types  

10. Higher-level constructs and advanced features 
 
These topics build on each other and present increasingly advanced language features. In particular, topics 1 and 2 suffice to build any 
combinational circuit; every other feature is a convenience. 
 
This tutorial uses interactive examples. You can execute each code snippet (cell) by pressing Shift+Enter. The executable examples 
consist of Boolean functions and one of two special commands, called magics: %%eval to evaluate a function and %%synth to synthesize 
it into a circuit. (These magics are not part of the Minispec language, but separate commands integrated in Jupyter; see Section 
13 of the Minispec reference (https://6191.mit.edu/_static/fall23/resources/references/minispec_reference.pdf ).   

 

1. The Bool type and Boolean operations 
 
Values of type Bool can take one of two values, True or  False . Bool values support the three basic Boolean algebra operations: 
 

! : Boolean NOT   
&& : Boolean AND   
|| : Boolean OR  

 
For example, 
 

Bool a = True;  
Bool b = False; 

 
Bool x = !a; // False since a == True  
Bool y = a && b; // False since b == False  
Bool z = a || b; // True since a == True 

 
Bool values also support equality operations: 

 
== : Equals   
!= : Not equals  

 
For example, 
 

Bool a = True;  
Bool b = False; 

 
Bool e = a == b; // False  
Bool n = a != b; // True 

 
Note that, for Boolean values, != is equivalent to Boolean XOR, and == is equivalent to Boolean XNOR. 



2. Functions 
 

In Minispec, functions specify combinational circuits. Each function produces an output result that depends only on the values of its input 
arguments. 

 
Definition: Functions can be defined using the following syntax: 

 
function RetType fname(Type1 arg1, ..., TypeN argN);  
stmt1  
...  
stmtM  

endfunction 
 

where fname is the function’s name; RetType is the type of its return value; arg_i are the names of its input arguments, with types 
Type_i ; and stmt_i are statements. 

 
Functions must return a result by using return statements. For example, the function below shows a function containing a single return 
statement.  

 
In [1]:  function Bool and2(Bool a, Bool b);  

return a && b;  
endfunction 

 
no errors found 

 
You can evaluate a function with the %%eval magic. For example,  

 
In [2]:  %%eval and2(False, True)  

%%eval and2(True, True) 
 

and2(False, True) = False  
and2(True, True) = True 

 
More complex functions can use multiple statements. For example, the majority function below returns True iff at least two out of its 
three inputs are True . This function uses three assignment statements before its return statement.  

 
In [3]:  function Bool majority(Bool a, Bool b, Bool c);  

Bool ab = a && b;  
Bool ac = a && c;  
Bool bc = b && c;  
return ab || ac || bc;  

endfunction 
 

%%eval majority(True, False, False)  
%%eval majority(False, True, True) 

 
majority(True, False, False) = False  
majority(False, True, True) = True 

 
Functions can invoke other functions:  

 
In [4]: function Bool and4(Bool a, Bool b, Bool c, Bool 

d); Bool ab = and2(a, b); 
Bool cd = and2(c, d);  
return and2(ab, cd);  

endfunction 
 

%%eval and4(True, True, True, True)  
%%eval and4(True, False, True, True) 

 
and4(True, True, True, True) = True  
and4(True, False, True, True) = False 

 
However, a function may not invoke itself, i.e., recursion is not allowed. 

 
Because functions are often short, Minispec has a shorthand syntax to declare single-statement functions more succinctly. For example, 
the and4 implementation below is equivalent to the one above. Instead of a return statement followed by endfunction , the 
expression that computes the output value follows the = sign. 



In [5]:  function Bool and4(Bool a, Bool b, Bool c, Bool d) = a && b && c && d; 
 

no errors found 
 

 
3. Manual synthesis of functions into combinational circuits 

 
Minispec functions can always be synthesized to combinational circuits. This is because functions have two key properties: 

 
1. Pure: Functions compute the output based only on the values of its input arguments. They cannot use or alter any state or variables 

outside the function. 
2. Acyclic: Functions have no cycles, i.e., they cannot "jump back" to a prior point of execution. They are thus always guaranteed to 

terminate in a bounded number of steps, and that number is independent of the particular values of the input arguments. This is why 
recursion is not allowed. 

 
In practice, Minispec functions are synthesized by composing smaller building blocks. This exploits that combinational circuits compose 
easily: a circuit composed of multiple combinational devices connected with wires is also combinational if each input of the constituent 
devices is tied to a single output or a constant value, and if the network is acyclic, i.e., it has no directed cycles (which may create feedback 
loops). 

 
Since Minispec functions are acyclic, one can synthesize a function by synthesizing a each syntax element (expression, statement, etc.) 
and connecting them. Though the details of synthesis depend on the compiler and tools used, it is useful to roughly understand how syntax 
elements are translated and composed. With what we have seen so far, we need only three rules: 

 
1. Each complex expression is broken down into a tree of basic operations (e.g., operators or function calls), then each operation is 

synthesized, and finally their inputs and outputs are wired together in the same tree fashion. 
2. All operators (e.g., && , || , etc.) can be implemented using combinational circuits. Each operator is synthesized as a separate circuit.  
3. Functions are inlined: each function call instantiates a separate circuit implementing the function, which is then synthesized (since 

there’s no recursion, inlining functions always terminates). 
 

The last rule is particularly important to keep in mind, because it is completely different from how software procedures are commonly 
implemented. 

 
Using these rules, we can manually synthesize all the functions we have seen so far. For example, the figure below shows the manual 
synthesis of the and2 and and4 circuits.  

 
 
 
 
 
 
 

We will introduce more language elements later, and explain how they are synthesized then. For a full description, see Section 8.1 of the 
Minispec reference (https://6191.mit.edu/_static/fall23/resources/references/minispec_reference.pdf ).  

 
 

4. The Bit#(n) type and operations 
 

While Bool is technically the only type we need to write combinational circuits, working with many single-bit values gets tedious quickly. 
For example, if we wanted to code a function that operated on a 32-bit number, we'd need to pass 32 Bool arguments! Even worse, 
since each function can produce only one output result, implementing circuits with several output wires would require a separate function 
per output wire. 

 
To address this problem, Minispec provides more complex types that encapsulate a collection of bits. The most basic of these is Bit#  
(n) , which encodes an n -bit value ( n must be a non-negative number). Most types (all except Integer , which we will see later) are 
represented in hardware using a fixed number of bits. 

 
The first order of business is how to assign fixed values (e.g., 0, 1, 42, etc.) to Bit#(n) variables. This is the role of number literals. 

 
Number literals: Number literals encode numeric values. They can be sized or unsized. Sized literals encode their bit-width, i.e., the 
number of bits they take. By contrast, unsized literals have no explicit bit-width. Literals can be specified in decimal, hexadecimal, and 
binary bases. 

 
A sized number literal always consists of three elements: 

 
1. Bit-width, written as a decimal number. 



2. Base: 'd for decimal, 'h for hexadecimal, and 'b for binary.  
3. Value, written using digits in the specified base (0–9 for decimal, 0–9 and a–f for hex, and 0 or 1 for binary). 

 
An unsized number literal has no bit-width, and consists of an optional base and value. If the base is not given, the value is interpreted as 
decimal. To make long values more readable, number literals allow using underscore characters (_) to separate value digits. 
 
The examples below showcase these rules: 
 

// Sized number literals  
// 4-bit decimal value 
10 4'd10 // in decimal 
4'b1010 // in binary 
4'ha // in hex 
4'hA// hex digits are case-insensitive 

 
// 8-bit decimal value 10  
8'b00001010  
8'b1010  
8'h0a 

 
// Unsized number literals 
'd10 // decimal 10 

10 // also decimal 10 
'b1010 

 
'habcdef 

 
// Underscores (_) can separate 
digits 16'b1010_0110_1101_0010 

 
Sized and unsized literals can both be used in expressions involving Bit#(n) variables. The examples below illustrate their pros and 
cons. Sized literals enforce their bit-width, and will cause a compile-time error on a width mismatch. By contrast, unsized literals have their 
bit-width deduced by the compiler. This makes code more succinct and can help express long values, but the compiler won’t catch 
mistakes that stem from wrong assumptions about bit-widths. 
 

Bit#(4) x = 4'd10; // OK, as both x and the literal are 4 bits  
Bit#(5) y = 4'd10; // Error due to mismatched bit-widths, y is 5 bits  
Bit#(4) z = 10; // OK, 10 inferred to be 4 bits  
Bit#(4) w = 1000; // Error, decimal 1000 inferred to be 4 bits but doesn't fit in 4 bits 

 
Bitwise logical operations:  
Bitwise logical operations take 

 
 
Bit#(n)  
Bit#(n) 

 
 

supports bitwise inversion/NOT ( 
inputs and produce a Bit#(n) 

 
 
~ ), AND ( & ), OR ( | ), XOR ( ^ ), and XNOR( ~^ or  ^~ ).  
output, where the operations apply to each bit of the inputs. For  

example: 
 

Bit#(4) a = 4'b0011;  
Bit#(4) b = 4'b0101; 

 
Bit#(4) x = ~a; // 4'b1100  
Bit#(4) y = a & b; // 4'b0001  
Bit#(4) z = a ^ b; // 4'b0110 

 
Bit selection: Given a 

 
 
Bit#(n) 

 
 
variable 

 
 
x 

 
 
, 

 
 
x[i] 

 
 
selects the 

 
 
  ℎ 

 
 
bit of 

 
 
x . x[i] 

 
 
has type 

 
 
Bit#(1) . 
 

Bits are enumerated right-to-left, i.e., starting from the least-significant bit. For example, given Bit#(4) x = 4'b1010 , then x[0] = 0 (the 
least-significant or rightmost bit), x[1] = 1 , x[2] = 0 , and x[3] = 1 (the most-significant or leftmost bit). This is consistent with 
how digits are always enumerated in a number (according to significance, so x 's value is 2"𝑥[𝑖]'()

"*+ ), but it is different from how 
vectors are indexed. 
 
Given a  Bit#(n) variable  x , x[i:j] , with i ≥ j, selects the range of bits of x starting at x[i] and ending at x[j] , both inclusive.  
For example, given  Bit#(4) x = 4'b1010 , x[2:1] is the Bit#(2) value 2'b01 . 
 
Example 1: Parity circuit. The parity of an n-bit value is 0 if the value has an even number of ones, or 1 if the value has an odd number of  
ones. Parity is a useful way to detect errors: if a single bit flips in a value, its parity changes, so systems often store and transmit the parity  
of all values and check them to see whether a bit has flipped. Moreover, computing the parity is very simple: it's the XOR of all the bits. 
 
The parity8 function below computes the parity of an 8-bit argument. parity8 is built by combining smaller circuits (functions) that 
compute the parity of 4-bit and 2-bit arguments: 



In [6]:  function Bit#(1) parity2(Bit#(2) x) = x[1] ^ x[0];  
function Bit#(1) parity4(Bit#(4) x) = parity2(x[3:2]) ^ parity2(x[1:0]);  
function Bit#(1) parity8(Bit#(8) x) = parity4(x[7:4]) ^ parity4(x[3:0]);  
%%eval parity8(8'b0100_0110)  
%%eval parity8(8'b0101_0110) 

 
parity8(8'b0100_0110) = 'h1  
parity8(8'b0101_0110) = 'h0 

 
The example above uses function composition to build parity8 out of several simple functions. We recommend you structure your 
design into collections of simple and reusable functions. 

 
That said, the example above does not use the fact that XOR ( ^ ) is a bitwise operator. To show this, here is an alternative implementation 
that does so, by XOR-ing the upper and lower parts of the value until reducing the value to a Bit#(1) : 

 
 
In [7]:  function Bit#(1) parity8_alt(Bit#(8) x);  

Bit#(4) r4 = x[7:4] ^ x[3:0];  
Bit#(2) r2 = r4[3:2] ^ r4[1:0];  
Bit#(1) r1 = r2[1] ^ r2[0];  
return r1;  

endfunction  
%%eval parity8_alt(8'b0100_0110)  
%%eval parity8_alt(8'b0101_0110) 

 
parity8_alt(8'b0100_0110) = 'h1  
parity8_alt(8'b0101_0110) = 'h0 

 
Bit concatenation: Given two or more Bit#() values x1 , ..., xk , {x1 , ..., xk} concatenates these values. The result has 
type Bit#(s) , where s is the sum of the bit-widths of all concatenated elements. For example: 

 
Bit#(2) a = 2’b11;  
Bit#(4) b = 4’b1001;  
Bit#(3) c = 3’b010;  
Bit#(9) x = {a, b, c}; // 9’b111001010  
Bit#(5) y = {a, c}; // 5’b11010  
Bit#(3) z = {1’b1, a}; // 3’b111 

 
Example 2: Ripple-carry adder. A ripple-carry adder is a simple (but slow) adder that implements the elementary addition method (i.e., it 
adds numbers the way we saw in Lecture 1 (https://6191.mit.edu/_static/fall23/resources/lectures/L01.pdf ).  

 
An n-bit ripple-carry adder takes two n-bit inputs and a 1-bit carry-in input and returns an (n+1)-bit output with the sum of all inputs. The 
most-significant bit of the output is called the carry-out bit. This allows constructing a ripple-carry adder as a concatenation of 1-bit adders, 
also called full adders, where the carry-out of the 𝑖,-addr becomes the carry-in of the (𝑖 + 1),- adder.  

 
The  rca4 function below implements a 4-bit ripple-carry adder using bit selection, concatenation, and bitwise logical operators:  

 
In [8]: function Bit#(2) fullAdder(Bit#(1) a, Bit#(1) b, Bit#(1) 

carryIn); Bit#(1) sum = a ^ b ^ carryIn; 
Bit#(1) carryOut = (a & b) | (carryIn & a ) | (carryIn & b); // majority (at least two 1s)  
return {carryOut, sum};  

endfunction 
 

function Bit#(3) rca2(Bit#(2) a, Bit#(2) b, Bit#(1) carryIn); 
Bit#(2) lower = fullAdder(a[0], b[0], carryIn); 
Bit#(2) upper = fullAdder(a[1], b[1], lower[1]); // carry-out of previous full adder used as 
carry-in return {upper, lower[0]}; 

endfunction 
 

function Bit#(5) rca4(Bit#(4) a, Bit#(4) b, Bit#(1) 
carryIn); Bit#(3) lower = rca2(a[1:0], b[1:0], carryIn);  
Bit#(3) upper = rca2(a[3:2], b[3:2], lower[2]);  
return {upper, lower[1:0]};  

endfunction 
 

// Expected 5+3+1 = 
9 %%eval rca4(5,3,1) 

 
rca4(5,3,1) = 'h09 

 
Other operators: Bit#(n) supports more complex built-in operators, including arithmetic operators ( + , - , * , ...) and relational 



operators ( > , >= , etc.), These operations treat Bit#(n) values as unsigned integers. 
 

Though complex operators are convenient in large designs (they express a lot of logic!), they can obscure implementation details. For this 
reason, we discourage their use when first learning Minispec, and their use is not permitted in the first few labs on digital design. We will lift 
this restriction later. 

 
To see these operators and further details on the ones we have introduced, see Section 6.1 of the Minispec reference 
(https://6191.mit.edu/_static/fall23/resources/references/minispec_reference.pdf).    
Example 3: Majority, again (or why we'll pass on complex operators for now). The function below implements the majority  
function we saw above, but using a single Bit#(3) argument instead of three Bool arguments, and a Bit#(1) output instead of a 
Bool output.  

 
In [9]: function Bit#(1) majority(Bit#(3) x) = (x[0] & x[1]) | (x[0] & x[2]) | (x[1] & 

x[2]); %%eval majority(3'b101) 
%%eval majority(3'b001) 

 
majority(3'b101) = 'h1  
majority(3'b001) = 'h0 

 
From looking at the operators used, it is pretty clear that this function can be implemented using three 2-input AND gates and two 2-input 
OR gates. 

 
Now, consider an alternative implementation that uses complex operators:  

 
In [10]:  function Bit#(1) majority_alt(Bit#(3) x);  

Bit#(2) sum = {1'b0, x[0]} + {1'b0, x[1]} + {1'b0, x[2]};  
return (sum >= 2)? 1'b1 : 1'b0;  

endfunction  
%%eval majority_alt(3'b101)  
%%eval majority_alt(3'b001) 

 
majority_alt(3'b101) = 'h1  
majority_alt(3'b001) = 'h0 

 
This implementation is arguably a more direct description of the majority function: it sums the bits of the input and returns 1 if over half of 
them are 1. Moreover, this implementation is much easier to extend to more bits (e.g., to compute the majority of a Bit#(7) input 
instead of a Bit#(3) , we could add the 7 bits and compare with 4). But it's harder to see how this function would be implemented: 
synthesizing this function by hand requires knowing how addition and comparisons are implemented. (It also requires knowing more 
syntax.) 

 
Thus, until we see the underlying implementation of more complex operators in labs, we will refrain from using these operators. 

 

 
5. Types and type inference 

 
Minispec is a strongly typed language with static type checking: every variable and expression has a type, and that type must be known 
statically, i.e., at compile time. Variables must be assigned values with compatible types. 

 
We have already seen two types, Bool and Bit#(n) , and have informally seen strong typing and static type checking at work. For 
instance, so far we have specified the type of every variable (e.g., Bool x = True; ), and seen how every variable has a fixed type: 
whereas in languages like Python one can write x = True and later x = 2 , in Minispec you cannot have the same variable take Bool 
and Bit#(n) values. 

 
Minispec has other built-in types and the ability to define your own types. We will introduce these concepts later. 

 
Type conversions are explicit: Unlike in some languages, in Minispec almost all conversions between values of different types are 
explicit. For example, it is illegal to assign a Bool value to a Bit#(1) variable (or vice versa), even though both take one bit to represent. 
Similarly, it is illegal to assign Bit#(4) value to a Bit#(8) variable, because they have a different number of bits and implicit bit-width 
extensions never happen. This makes code more verbose but reduces mistakes, as shown below: 



Bool b = True;  
Bit#(1) x = b; // Error, cannot convert from Bool to Bit#(1)  
Bit#(1) y = b? 1 : 0; // OK, uses ternary operator to convert explicitly 

 
Bit#(4) i = 12;  
Bit#(8) j = i; // Error, mismatched bit-widths 4 and 8  
Bit#(8) k = {0, i}; // OK, uses concatenation to zero-extend i 

 
The one exception to this rule is the Integer type, which we will see in Section 8. Integer values work just like unsized literals and can 
be assigned to Bit#(n) variables without explicit conversion. For example: 
 

Integer n = 3 * 4; // n=12  
Bit#(8) x = n; // OK  
Bit#(n) y = n * n; // OK, Bit#(12) y = 144; 

 
Type inference: Minispec allows omitting a variable’s type by using the let keyword. The compiler will infer the variable’s type from the 
expression assigned to the variable. For example: 
 

Bit#(4) x = 1;  
let y = x;  // Bit#(4) 
let z = {x, x}; // Bit#(8) 
let w = 2’b11; // Bit#(2) 
let n = 42;  // Integer 

 
Truncation and extension of Bit#(n) values: Since Minispec does not implicitly extend or truncate values, it provides three built-in 
functions to do length conversions: 
 

truncate truncates the most-significant bits of its argument to match the bit-width of a narrower destination.   
zeroExtend adds zeros to the left of the argument to match the bit-width of a wider destination.   
signExtend extends the argument by replicating its most significant bit to match the bit-width of a wider destination. For example:  

 
Bit#(4) a = 4’b1001;  
Bit#(2) x = truncate(a); // 2’b01  
Bit#(6) y = zeroExtend(a); // 6’b001001  
Bit#(6) z = signExtend(a); // 6’b111001  
Bit#(6) w = signExtend(x); // 6’b000001 

 
If a Bit#(n) value encodes an unsigned integer, zeroExtend preserves its value; if the variable encodes a signed integer in two's 
complement representation, signExtend preserves its value. 
 
 
6. Conditional expressions 
 
Conditional expressions allow selecting between two or more values depending on another value. 
 
Conditional operator: The conditional or ternary operator selects between two values based on a Bool value. Its syntax is: 
 

condExpr? trueExpr : falseExpr 
 
where condExpr is a Bool expression, and trueExpr and falseExpr are expressions of the same type. If condExpr is True , 
the expression evaluates to trueExpr ; otherwise, it evaluates to falseExpr . 
 
Each conditional operator is synthesized as a multiplexer or mux, specifically a 2-to-1 mux. The code below implements a multiplexer of  
Bit#(4) values:  

 
In [11]: function Bit#(4) mux4(Bit#(4) a, Bit#(4) b, Bool s) = s? a 

: b; %%eval mux4(2, 7, True) 
%%eval mux4(2, 7, False) 

 
mux4(2, 7, True) = 'h2  
mux4(2, 7, False) = 'h7 
 
Case expression: The case expression allows selecting among multiple values depending on a value. For example, the function below 
uses a case expression to compute whether its 4-bit input is prime. The case expression enumerates all 4-bit values that are prime; if so, 
the case expression evaluates to True . If none of the values match, the case expression evaluates to the default value, False : 



In [12]:  function Bool isPrime(Bit#(4) x) = case (x)  
1 : True;  
2 : True;  
3 : True;  
5 : True;  
7 : True;  
11: True;  
13: True;  
default: False;  

endcase;  
%%eval isPrime(13)  
%%eval isPrime(10) 

 
isPrime(13) = True  
isPrime(10) = False 

 
 

The case expression must always evaluate to a value, so it can omit the default item only when it enumerates all possible values of the 
expression being compared (e.g., of x in the above example). 

 
Case expressions synthesize to N-to-1 muxes. For example, the function above can be synthesized with a 16-to-1 1-bit mux, where x is 
used as the select input, inputs 1, 2, 3, 5, 7, 11, and 13 are tied to 1, and all other others are tied to 0. (As we will see in Section 7, in 
practice, synthesis tools will use optimizations to simplify the implementation, but conceptually it is a mux). 

 
No "conditional execution": Many software programming languages provide conditional and case expressions or similar constructs, and 
their implementation typically uses conditional execution, i.e., evaluating only the expression in the path of interest. 

 
For example, consider the following conditional expression in C: r = c ? foo(x) : bar(y) (in Python this would be r = foo(x) if  
c else bar(y) ). When compiled to assembly, this code will evaluate c , then either call foo(x) if x is True , or call bar(y) if x is 
False , and assign the result to variable r . In other words, the code will call either foo(x) or bar(y) , but not both. This avoids  

wasted work because only one result is needed, and foo and bar may be long functions. 
 

This is not at all how conditional expressions are synthesized in Minispec, because combinational logic does not allow for conditional 
execution. Remember: functions describe combinational circuits, functions are inlined when called, and conditional expressions translate to 
muxes. Thus, synthesizing r = c? foo(x) : bar(y) will (1) synthesize foo(x) , i.e., creating an instance of the circuit implementing 
function foo with input x ; (2) synthesize bar(y) ; and (3) use a 2-to-1 mux to select between the outputs of foo(x) and bar(y) . 
Note how the circuit will evaluate both foo(x) and bar(y) . 

 
"Conditional execution" is a common source of confusion, so this bears repeating: there is no conditional execution with combinational 
logic. This is important because, when thinking about the area and time a circuit will take, you must consider that all paths will be 
evaluated, not just one. 

 
 

7. Automatic synthesis of functions into combinational circuits 
 

In Section 2 we saw how to synthesize functions manually, with pen and paper. But this gets tedious quickly, so we provide tools 
to automatically synthesize Minispec code into gate-level circuits. 

 
In Jupyter, functions can be synthesized using the %%synth magic. For example, let's synthesize the and4 function from Section 2 and 
visualize the resulting circuit: 



In [13]:  %%synth and4 -v 
 

Creating synthesis directory  
Compiling function and4  
Synthesizing circuit with std cell library = basic, O1, target delay = 1 ps 

 
Gates: 3  
Area: 2.39 um^2  
Critical-path delay: 23.53 ps 

 
Critical path: d -> out    

Gate/port Fanout Gate delay (ps) Cumulative delay (ps) 
--------- ------ --------------- --------------------- 

d 1 2.7 2.7 
NAND2 1 8.7 11.4 
NOR2 1 12.1 23.5 
out 0 0.0 23.5 

Area breakdown:    
Gate type Gates Area/gate (um^2) Area/type (um^2) 
--------- ----- ---------------- ---------------- 

NAND2 2 0.798 1.596 
NOR2 1 0.798 0.798 

Total 3  2.394 
 

Circuit diagram: 
 

a   
out 

 
b 

 
c 

 
d 

 
 
 

Synthesis complete 
 

The result of %%synth above has four parts: 
 

1. A summary of the characteristics of the synthesized circuit: number of gates, area, and critical-path delay (i.e., the longest propagation 
delay from any input to any output). For example, the and4 circuit has 3 gates that take 2.39 square microns (um^2) and a critical-
path delay of 23.53 picoseconds (ps). 

2. A critical path report, showing the input and output wires involved in the critical path and the delay accumulated through individual 
gates in the path between them. 

3. An area report, breaking down the area consumed by each type of gate.  
4. If the -v (view) flag is given, a drawing of the circuit. 

 
%%synth performs synthesis optimizations to achieve a circuit implementation with low delay and area. This means that, in general, 

you will not see the same gates being used in the implementation as the ones the function specifies. For example, looking at the function 
code, you may have expected a circuit using 3 2-input AND gates; however, synth uses two 2-input NAND gates and one 2-input NOR 
gate. In general, you'll see inverting gates being used more often, as they are more efficient in current fabrication technology (CMOS). 

 
%%synth has more options (e.g., to control what library of gates to use, whether to optimize for delay or area, etc.). Run %%synth -h 

for a list of options. %%synth will be used in labs but we will not describe it further in this tutorial. 
 

You can try synthesizing a few more of our previous functions: 



In [14]:  %%synth rca2 -v  
// The extended library has more 
gates %%synth rca2 -l extended -v 

 
Compiling function rca2  
Synthesizing circuit with std cell library = basic, O1, target delay = 1 ps 

 
Gates: 30  
Area: 21.81 um^2  
Critical-path delay: 62.58 ps 

 
Critical path: b[0] -> out[1]   

Gate/port Fanout Gate delay (ps) Cumulative delay (ps) 
--------- ------ --------------- --------------------- 

b[0] 4 10.0 10.0 
INV 2 8.0 18.0 

NAND2 1 8.9 26.9 
NAND2 1 7.4 34.3 
NAND2 2 10.6 44.9 
NOR2 1 12.8 57.7 
NOR2 1 4.9 62.6 

out[1] 0 0.0 62.6 

Area breakdown:    
Gate type Gates Area/gate (um^2) Area/type (um^2) 
--------- ----- ---------------- ---------------- 

INV 8 0.532 4.256 
NAND2 12 0.798 9.576 
NOR2 10 0.798 7.980 

Total 30  21.812 
 

Circuit diagram:  
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Synthesis complete   
Compiling function rca2  
Synthesizing circuit with std cell library = extended, O1, target delay = 1 ps 

 
Gates: 12  
Area: 13.30 um^2  
Critical-path delay: 63.29 ps 

 
Critical path: a[0] -> out[1]   

Gate/port Fanout Gate delay (ps) Cumulative delay (ps) 
--------- ------ --------------- --------------------- 

a[0] 3 8.7 8.7 
NAND2 1 9.1 17.8 
NAND3 3 21.2 39.0 
XNOR2 1 24.3 63.3 



 
out[1] 0 0.0 63.3 

Area breakdown:    
Gate type Gates Area/gate (um^2) Area/type (um^2) 
--------- ----- ---------------- ---------------- 

NAND2 6 0.798 4.788 
NAND3 2 1.064 2.128 
XNOR2 4 1.596 6.384 
Total 12  13.300   

Circuit diagram:  
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Synthesis complete 



In [15]:  // By default synth seeks to minimize delay, then area.  
// If you give it a high delay target (1000 ps below), it will seek to minimize 
area. %%synth parity8 -l extended -d 1000 -v 

 
Compiling function parity8  
Synthesizing circuit with std cell library = extended, O1, target delay = 1000 ps 

 
Gates: 7  
Area: 11.17 um^2  
Critical-path delay: 81.99 ps 

 
Critical path: x[0] -> out    

Gate/port Fanout Gate delay (ps) Cumulative delay (ps) 
--------- ------ --------------- --------------------- 

x[0] 1 3.8 3.8 
XOR2 1 29.9 33.7 

XNOR2 1 24.7 58.4 
XNOR2 1 23.6 82.0 

out 0 0.0 82.0 

Area breakdown:    
Gate type Gates Area/gate (um^2) Area/type (um^2) 
--------- ----- ---------------- ---------------- 

XNOR2 6 1.596 9.576 
XOR2 1 1.596 1.596 

Total 7  11.172 
 

Circuit diagram:  
 
 

x 

 
 

 3  
2  
7  
6   
1  
0  
5  
4  

out  
 
 
 

Synthesis complete 
 

 
8. Parametric functions, Integers, and static elaboration 

 
Minispec provides parametric types, such as Bit#(n) , that take one or more parameters, such as n in this case. These parameters must 
be known at compile time, and when specified, yield a concrete type that can be implemented in hardware (such as Bit#(4) , a 4-bit 
value). 

 
Minispec also allows defining parametric functions. These enable writing generic circuit descriptions that are then concretized as needed. 

 
For example, so far we have implemented functions specialized to particular bit-widths, like parity2 , parity4 , and parity8 for 2-, 
4-, and 8-bit inputs, respectively. Instead, we can write a single parity#(n) function that computes the parity of an n-bit input. Then, 
users of the function will call it with particular values of n, instantiating parity circuits of different widths. Let's go ahead and do that:  

 
In [16]:  function Bit#(1) parity#(Integer n)(Bit#(n) x) =  

(n == 1)? x : x[n-1] ^ parity#(n-1)(x[n-2:0]); 
 

%%eval parity#(8)(8'b0100_0110)  
%%eval parity#(128)(-1) 

 
parity#(8)(8'b0100_0110) = 'h1  
parity#(128)(-1) = 'h0 

 
There is a lot going on here! First, the function name is followed by #(Integer n) , denoting that this function has an Integer 
parameter called n . Integer is a special type that is evaluated at compile time. n is used within the function, including to select bits, in 
a conditional expression, etc. Second, the body of the function does one of two things: if n is 1, it returns x , which in this case is a Bit# 



(1) value; otherwise, it XORs the most-significant bit of x with the parity of its remaining bits, which it computes by calling parity#(n-  
1) . 
 
This example conspicuously violates two of the rules we've established so far. First, we said no recursion (Section 2), but parity#(n) is 
calling parity#(n-1) ! Second, we said no conditional execution (Section 6), but if parity#(1) instantiated both branches of the 
conditional, it would call parity#(0) , which would call parity#(-1) , and so on, so recursion would never end! 
 
The reason this code works is that parameters are always evaluated a compile-time: they are simply a facility to make the code more 
expressive, but no Integer variable will ever make it to hardware. The two restrictions above exist because we want functions to be 
implementable in combinational logic, but if we are doing this evaluation at compile-time, these restrictions are unnecessary, and so they 
are lifted. 
 
More concretely, given the parity#(n) code above, a call to  parity#(4) will make the compiler produce the following code:  
 

In [17]: function Bit#(1) parity#(4)(Bit#(4) x) = x[3] ^ parity#(3)(x[2:0]); 
function Bit#(1) parity#(3)(Bit#(3) x) = x[2] ^ 
parity#(2)(x[1:0]); function Bit#(1) parity#(2)(Bit#(2) x) = x[1] 
^ parity#(1)(x[0:0]); function Bit#(1) parity#(1)(Bit#(1) x) = x; 

 
%%eval parity#(4)(4'b1010)  
%%eval parity#(4)(4'b1011) 

 
parity#(4)(4'b1010) = 'h0  
parity#(4)(4'b1011) = 'h1 
 
This compile-time evaluation process is known as static elaboration. Note how the above code, after expanded, follows the rules we saw 
before: it is not recursive on the arguments (only on the parameter n ), and it terminates because the conditional statement is gone (it 
was conditional on a parameter, so it was evaluated at compile-time). 
 
The rest of this section gives more detail on Integers and static elaboration semantics: 
 
Integer type: Integer represents an integer value (i.e., a negative or non-negative number) with an unbounded number of bits. 
Integer supports the same operators as Bit#(n) (including logical, arithmetic, relational, and bit-reductions). However, since 
Integer is signed, arithmetic and relational operators have signed semantics. 

 
Integer is the only type in Minispec that is not synthesizable to hardware. It is used exclusively at compile time: all 
Integer expressions must be evaluable by the compiler. 
 
The internal representation of Integer values is irrelevant: they have an unbounded number of bits, so you needn't worry about whether 
they use two's complement or some other representation. 
 
Parameters can be Integer values or other types. So far we have only seen Integer parameters (e.g., Bit#(n) and parity#  
(n) ). As an example of a parametric type with a type parameter, Vector#(n, T) represents an n-element vector with elements of type 
T . For instance, the function below sums the elements of 4-element vector of 32-bit values: 



In [18]: function Bit#(32) sum(Vector#(4, Bit#(32)) elems) = 

elems[0] + elems[1] + elems[2] + elems[3]; 
 
%%synth sum 

 
Compiling function sum   
Synthesizing circuit with std cell library = basic, O1, target delay = 1 ps 
 
Gates: 1495  
Area: 1066.39 um^2  
Critical-path delay: 558.10 ps 
 
Critical path: elems[1] -> out[31]   

Gate/port Fanout Gate delay (ps) Cumulative delay (ps) 
--------- ------ --------------- --------------------- 
elems[1] 3 7.5 7.5 

INV 1 5.7 13.2 
NAND2 1 7.6 20.8 
NAND2 3 13.6 34.4 
NAND2 1 9.0 43.4 
NAND2 3 12.6 56.0 
NAND2 1 9.0 65.0 
NAND2 4 14.8 79.8 
NAND2 1 9.6 89.4 
NAND2 5 18.3 107.7 
NAND2 1 10.3 118.0 
NAND2 3 13.3 131.3 
NAND2 1 8.9 140.2 
NAND2 2 10.5 150.7 
NAND2 2 10.7 161.4 

INV 1 5.7 167.1 
NOR2 2 15.0 182.1 
INV 1 5.2 187.3 

NOR2 4 25.2 212.5 
NOR2 4 13.3 225.8 
INV 3 13.6 239.4 

NOR2 2 9.0 248.4 
NAND2 1 8.1 256.5 
NAND2 1 9.3 265.8 
NOR2 1 13.5 279.3 

NAND2 4 17.5 296.8 
NAND2 1 9.6 306.4 
NAND2 4 15.0 321.4 
NAND2 1 9.5 330.9 
NAND2 3 12.9 343.8 
NAND2 1 8.9 352.7 
NAND2 3 13.0 365.7 
NAND2 2 11.8 377.5 

INV 1 7.4 384.9 
NOR2 3 17.7 402.6 

NAND2 1 10.1 412.7 
NAND2 3 13.0 425.7 
NAND2 2 11.3 437.0 
NOR2 1 12.6 449.6 

NAND2 1 8.6 458.2 
NAND2 2 11.6 469.8 

INV 1 5.0 474.8 
NAND2 3 11.6 486.4 
NAND2 1 9.0 495.4 
NAND2 2 10.3 505.7 
NAND2 1 8.5 514.2 
NAND2 2 10.2 524.4 
NAND2 1 8.5 532.9 
NAND2 1 7.9 540.8 
NOR2 1 5.4 546.2 
NOR2 1 11.9 558.1 

out[31] 0 0.0 558.1 

Area breakdown:    
Gate type Gates Area/gate (um^2) Area/type (um^2) 
--------- ----- ---------------- ---------------- 

INV 476 0.532 253.232 
NAND2 371 0.798 296.058 
NOR2 648 0.798 517.104 



 
Total 1495 1066.394   

Synthesis complete  
 
Parametric functions are defined by specifying the parameters after the function name, enclosed in #(...) . Each parameter definition 
can be: 
 

Integer intParam to denote an Integer parameter with name intParam , which must be lowercase.   
type TypeParam to denote a type parameter with name TypeParam , which must be uppercase.   
A specific Integer literal or type, which allows writing parametric definitions that are already specialized to particular parameter values 
(like the parity#(4) , parity#(3) , etc. code above). Integer and type parameter names can be used anywhere in the 
parametric definition, including in the return type of the function.   

Parametric definitions can be specialized. The code can specify both a general parametric definition with Integer and type parameters, and 
one or more specialized definitions with fixed Integers and types. On a match, a specialized definition takes precedence over the general 
one. 
 
For example, the code below implements an n-bit ripple-carry adder  rca#(n) using a specialized definition and a general one: 



In [19]:  // base case (specialized)  
function Bit#(2) rca#(1)(Bit#(1) a, Bit#(1) b, Bit#(1) 

cin); let cout = (a & b) | (a & cin) | (b & cin); 
let sum = a ^ b ^ cin;  
return {cout, sum};  

endfunction 
 

// general case (used when n != 1)  
function Bit#(n+1) rca#(Integer n)(Bit#(n) a, Bit#(n) b, Bit#(1) 

cin); let lower = rca#(n-1)(a[n-2:0], b[n-2:0], cin); 
let upper = rca#(1)(a[n-1], b[n-1], lower[n-1]);  
return {upper, lower[n-2:0]};  

endfunction 
 

%%eval rca#(32)(10000, 99999, 1) 
 

// Synthesize rca#(32). If you try different sizes,  
// you'll see that delay grows linearly with number of 
bits %%synth rca#(32) -l multisize 

 
rca#(32)(10000, 99999, 1) = 'h00001adb0   
Compiling function rca#(32)  
Synthesizing circuit with std cell library = multisize, O1, target delay = 1 ps 

 
Gates: 192  
Area: 229.29 um^2  
Critical-path delay: 608.77 ps 

 
Critical path: b[0] -> out[31]   

Gate/port Fanout Gate delay (ps) Cumulative delay (ps) 
--------- ------ --------------- --------------------- 

b[0] 3 8.9 8.9 
OR2_X2 1 23.3 32.2 

NAND2_X2 1 7.7 39.9 
NAND2_X2 2 9.8 49.7 
NAND2_X2 1 8.0 57.7 
NAND2_X2 2 9.8 67.5 
NAND2_X2 1 8.0 75.5 
NAND2_X2 2 9.8 85.3 
NAND2_X2 1 8.0 93.3 
NAND2_X2 2 10.0 103.3 
NAND2_X2 1 8.0 111.3 
NAND2_X2 2 9.9 121.2 
NAND2_X2 1 8.0 129.2 
NAND2_X2 2 9.8 139.0 
NAND2_X2 1 8.1 147.1 
NAND2_X2 2 9.9 157.0 
NAND2_X2 1 8.0 165.0 
NAND2_X2 2 10.0 175.0 
NAND2_X2 1 8.0 183.0 
NAND2_X2 2 9.9 192.9 
NAND2_X2 1 8.1 201.0 
NAND2_X2 2 9.9 210.9 
NAND2_X2 1 8.0 218.9 
NAND2_X2 2 9.8 228.7 
NAND2_X2 1 8.0 236.7 
NAND2_X2 2 9.8 246.5 
NAND2_X2 1 8.0 254.5 
NAND2_X2 2 10.0 264.5 
NAND2_X2 1 8.0 272.5 
NAND2_X2 2 10.0 282.5 
NAND2_X2 1 8.0 290.5 
NAND2_X2 2 9.9 300.4 
NAND2_X2 1 8.0 308.4 
NAND2_X2 2 10.0 318.4 
NAND2_X2 1 8.0 326.4 
NAND2_X2 2 10.0 336.4 
NAND2_X2 1 8.0 344.4 
NAND2_X2 2 9.9 354.3 
NAND2_X2 1 8.1 362.4 
NAND2_X2 2 9.9 372.3 
NAND2_X2 1 8.0 380.3 
NAND2_X2 2 10.0 390.3 
NAND2_X2 1 8.0 398.3 



 
NAND2_X2 2 9.9 408.2 
NAND2_X2 1 8.1 416.3 
NAND2_X2 2 9.7 426.0 
NAND2_X2 1 8.1 434.1 
NAND2_X2 2 9.9 444.0 
NAND2_X2 1 8.0 452.0 
NAND2_X2 2 10.0 462.0 
NAND2_X2 1 8.0 470.0 
NAND2_X2 2 10.0 480.0 
NAND2_X2 1 8.0 488.0 
NAND2_X2 2 9.9 497.9 
NAND2_X2 1 8.0 505.9 
NAND2_X2 2 10.0 515.9 
NAND2_X2 1 8.0 523.9 
NAND2_X2 2 10.0 533.9 
NAND2_X2 1 8.0 541.9 
NAND2_X2 2 9.9 551.8 
NAND2_X2 1 8.1 559.9 
NAND2_X2 2 9.9 569.8 
NAND2_X2 1 8.0 577.8 
NAND2_X2 2 8.7 586.5 
XNOR2_X1 1 22.3 608.8 
out[31] 0 0.0 608.8 

Area breakdown:    
Gate type Gates Area/gate (um^2) Area/type (um^2) 
--------- ----- ---------------- ---------------- 
NAND2_X1 65 0.798 51.870 
NAND2_X2 62 1.330 82.460 

OR2_X1 25 1.064 26.600 
OR2_X2 1 1.330 1.330 
OR2_X4 6 2.394 14.364 

XNOR2_X1 33 1.596 52.668 
Total 192  229.292   

Synthesis complete  
 

Static elaboration: Parametrics require clear guarantees on what computations and simplifications the compiler performs at compile time.  
We refer to this process as static elaboration. Minispec guarantees the following static elaboration behavior: 

 
1. All Integer expressions and variables are elaborated, i.e., turned into concrete values at compile time. An Integer expression or 

variable that cannot be elaborated causes a compiler error.  
2. Bool expressions and variables are elaborated if they depend only on Bool constants and Integer values.  
3. All conditional expressions (ternary, case) and control-flow statements (if-else, case, see Section 10 whose predicate is an elaborated 

Bool or Integer expression are elaborated to include only the branch that they execute, eliminating all others.  
4. Parametrics are instantiated and elaborated lazily, as the compiler finds code that uses them. 

 
The example below shows some errors that happen when one tries to assign values to Integer variables that are unknown at compile-
time:  

 
In [20]:  function Bool integerFail(Bit#(1) a, Bool b);  

// Uncomment these to see the compiler 
errors //Integer i = a; 
//Integer j = (a == 0)? 0 : 1;  
//Integer k = b? 100 : 1000 + 
j; return True; 

endfunction 
 

no errors found 
 

This concludes all you need to know on parametric functions. Further details are available in Section 10 of the Minispec reference 
(https://6191.mit.edu/_static/fall23/resources/references/minispec_reference.pdf).   

 
 

9. User-defined types 
 

Minispec supports three kinds of user-defined types: type synonyms, structs, and enums. 
 

Type synonyms allow giving a different name to an existing type. Their syntax is 
 

typedef Type NewType; 



where Type is any existing type, and NewType is the new type's name. A type and its synonym can be used interchangeably. For 
example:  

 
In [21]:  typedef Bit#(8) Byte;  

function Byte invert(Byte x) = ~x; 
 

%%eval invert(8'd1) 
 

invert(8'd1) = 'hfe 
 

Structs are composite types: they represent a group of members of different types. 
 

Struct definitions use the following syntax: 
 

typedef struct {  
Type1 member1;  
Type2 member2;  
...  
TypeN memberN;  

} StructType; 
 

where StructType is the (new) type for the struct, member_i are the (lowercase) names of its members, and Type_i are the 
(uppercase) types of its members. 

 
For example, the code below defines a 24-bit pixel with 8-bit red, green, and blue components (following the typical red-green-blue 
representation for on-screen colors):  

 
In [22]:  typedef struct {  

Byte red;  
Byte green;  
Byte blue;  

} Pixel; 
 

no errors found 
 

Struct values can be constructed with the following syntax: 
 

StructType { member1 : expr1, ..., memberN : exprN } 
 

where StructType is the struct’s type name, member_i are the struct members’ names, and expr_i denote the values that the 
members should take. 

 
For example, the code below defines the cyan color constant (no red, full green and blue):  

 
In [23]: Pixel cyan = Pixel{ red : 0, green : 255, blue : 

255 }; %%eval cyan 

cyan = Pixel { red: 'h00, green: 'hff, blue: 'hff } 
 

Struct members can be accessed as follows: given value s of a struct type that has a member with name m , the expression s.m yields 
the value of member m . For example:  

 
In [24]:  %%eval cyan.red + cyan.blue 

 
cyan.red + cyan.blue = 'hff 

 
Enums or enumerations represent a set of unique symbolic constants, called labels. Enums can be defined using the following basic 
syntax: 

 
typedef enum { Label1, ..., LabelN } EnumType; 

 
where EnumType is the enum’s type name, and Label_i are the names of the labels. Labels must be uppercase, and can be repeated  
across enum definitions. A value of type EnumType can take one of these labels.  
The compiler internally represents an enum with possible labels as a -bit value. With the syntax above, Label_i will take ⌈ 2 ⌉ 
numeric value i-1 (i.e., labels take consecutive values starting from 0). It is possible to assign the numeric value of each label explicitly 
using the following syntax: 



typedef enum { Label1 = val1, ..., LabelN = valN } EnumType; 
 

where val_i are the distinct numeric values of the labels. 
 

For example:  
 
In [25]:  typedef enum { Ready, Busy, Error } State;  

State state = Ready; 
 

typedef enum { Red = 0, Blue = 2, Green = 1 } PixelChannel; 
 

no errors found 
 

Example: Comparators. Comparators illustrate the benefits of structs and enums in defining combinational logic. First, structs come in 
handy when we want functions to return more than one named output value. For example, consider the code for a comparator of unsigned 
n-bit integers. Given inputs a and b , the compare#(n) function below divides them in upper and lower portions, and builds the 
comparator recursively: a is less than b if a 's upper part is less than b 's or their upper parts are equal and a 's lower part is smaller. 

 
To clarify the intent of the code, compare#(n) returns a struct with two Bool members, lessThan and equal . While the function 
could return a Bit#(2) value, we'd have to remember which bit represents which condition. Using a struct makes the code much more 
descriptive:  

 
In [26]:  typedef struct {  

Bool lessThan;  
Bool equal;  

} CompareResult; 
 

function CompareResult compare#(Integer w)(Bit#(w) a, Bit#(w) 
b); CompareResult upper = compare#(w-w/2)(a[w-1:w/2], b[w-
1:w/2]); CompareResult lower = compare#(w/2)(a[w/2-1:0], 
b[w/2-1:0]); return CompareResult {  

equal : upper.equal && lower.equal,  
lessThan : upper.lessThan || (upper.equal && lower.lessThan)  

};  
endfunction 

 
// Base case  
function CompareResult compare#(1)(Bit#(1) a, Bit#(1) b);  

return CompareResult { equal: (a ^ b) == 0, lessThan: (~a & b) == 
1 }; endfunction 

 
%%eval compare#(16)(2500, 3700)  
%%eval compare#(16)(4500, 3700)  
%%eval compare#(7)(42, 42) 

 
compare#(16)(2500, 3700) = CompareResult { lessThan: True, equal: False }  
compare#(16)(4500, 3700) = CompareResult { lessThan: False, equal: False }  
compare#(7)(42, 42) = CompareResult { lessThan: False, equal: True } 

 
A drawback of the above compare#(n) implementation is that CompareResult admits a value that makes no sense: a number cannot 
be both less than and equal to another number. The alternative implementation cmp#(n) below uses an enum with three labels instead to 
avoid this issue: 



In [27]:  typedef enum { LessThan, Equal, GreaterThan } CmpRes; 
 

function CmpRes cmp#(Integer w)(Bit#(w) a, Bit#(w) b);  
CmpRes upper = cmp#(w-w/2)(a[w-1:w/2], b[w-1:w/2]);  
CmpRes lower = cmp#(w/2)(a[w/2-1:0], b[w/2-1:0]);  
return (upper == Equal && lower == Equal)? Equal :  

(upper == LessThan || (upper == Equal && lower == LessThan))? LessThan : 
GreaterThan; endfunction 

 
// Base case  
function CmpRes cmp#(1)(Bit#(1) a, Bit#(1) b);  

return case ({a, b})  
2'b00: Equal;  
2'b01: LessThan;  
2'b10: GreaterThan;  
2'b11: Equal;  

endcase;  
endfunction 

 
%%eval cmp#(16)(2500, 3700)  
%%eval cmp#(16)(4500, 3700)  
%%eval cmp#(7)(42, 42) 

 
cmp#(16)(2500, 3700) = LessThan  
cmp#(16)(4500, 3700) = GreaterThan  
cmp#(7)(42, 42) = Equal 

 

 
10. Higher-level constructs and advanced features 

 
Finally, Minispec incorporates several constructs, such as if-else statements and for loops, that are familiar in other programming 
languages but are not trivial to synthesize to combinational logic. 

 
We present these constructs last for two reasons. First, they are the least necessary to know: you can design combinational circuits without  
them. Second, they can be confusing: their implementation in combinational logic is quite different from the equivalent constructs in 
programming languages and it is not trivial. Thus, it is crucial that you develop a clear understanding of what circuit each of these these 
constructs generates, and in this section we present the implementation of each construct together with its description. 

 
Variable assignments 

 
So far, we have only seen variable declarations and assignments of the form: 

 
Type varName = expression; 

 
This declares a new variable of type Type , named varName , and assigns it the value given by expression . 

 
Once declared, the previous examples never reassigned the value of a variable. But a variable can be assigned to multiple times. Each 
assignment changes the value bound to the variable. Every statement following the assignment sees the new value. For example:  

 
In [28]:  function Bit#(1) parity4(Bit#(4) x);  

Bit#(1) result;  
result = x[0] ^ x[1];  
result = result ^ x[2];  
result = result ^ x[3];  
return result;  

endfunction 
 

%%eval parity4(4'b0111) 
 

parity4(4'b0111) = 'h1 
 

It is also possible, though not recommended, to reassign individual bits, bit ranges, or struct members of a variable. For example: 



In [29]:  function Bit#(1) parity4(Bit#(4) x);  
x[1:0] = x[3:2] ^ x[1:0];  
x[0] = x[1] ^ x[0];  
return x[0];  

endfunction 
 

%%eval parity4(4'b0111) 
 

parity4(4'b0111) = 'h1 
 

Structs, Bit#(n) variables, and other compound types can be declared uninitialized and then initialized element by element. However, it 
is illegal to use a Bit#(n) variable that is partially initialized, even if the particular bits being accessed have been initialized. To avoid this 
problem, you can initialize the entire Bit#(n) variable (e.g., to 0 ), then reassign the individual bits. Structs do not suffer from this 
limitation. 

 
Synthesis: Variables require no logic. Each variable assignment is simply naming the value (i.e., wires) of a particular expression, so that it 
can be used somewhere else. 

 
Note that, unlike in software programming languages, variables are not state. They are not stored in registers or memory, they are just 
names for wires in a combinational circuit. 

 
Begin-end statements 

 
A begin-end statement denotes a block of code. It allows combining multiple statements into a single statement. Begin-end blocks can be 
used anywhere a statement is required, and are often used with control-flow statements if and for , which we will see next. Its syntax 
is: 

 
begin stmt1 ... stmtN end 

 
where stmt_i are statements. 

 
Each begin-end block initiates a new lexical context, which supports local variable declarations. Variables are lexically scoped: a 
variable may only be used inside the block of code it is defined in. Thus, a variable declared within a begin-end block cannot be used 
outside the block. 

 
If statements 

 
If statements have the following syntax: 

 
if (condExpr) trueStmt [ else falseStmt ] 

 
where condExpr is a Bool expression, and trueStmt and falseStmt are statements. If condExpr evaluates to True, then 
trueStmt takes effect. Otherwise, if the optional else clause is present, falseStmt takes effect. For example:  

 
In [30]:  function Bit#(4) max4(Bit#(4) a, Bit#(4) b);  

Bit#(4) result = b;  
if (a > b) result = a;  
return result;  

endfunction 
 

// Alternative implementation using if-else 
function Bit#(4) max4_alt(Bit#(4) a, Bit#(4) b); 

Bit#(4) result;  
if (a > b) result = 
a; else result = b; 
return result; 

endfunction 
 

%%eval max4(3, 8)  
%%eval max4_alt(3, 8) 

 
max4(3, 8) = 'h8  
max4_alt(3, 8) = 'h8 

 
As shown in the example below, if statements often use begin-end blocks, and multiple if-else statements can be chained ( if (cond1)  
... else if (cond2) ... ): 



In [31]:  function Bit#(2) ifExample(Bit#(2) x, Bit#(2) y);  
Bit#(2) z;  
if (x > 2) z = x;  
else if (y > 2) z = y;  
else begin  

let w = x + y;  
z = w + 1;  

end  
return z;  

endfunction 
 

// First branch (if) 
%%eval ifExample(3, 1) 
// Second branch (else if) 
%%eval ifExample(1, 3) 

// Third branch (else)  
%%eval ifExample(1, 0) 

 
ifExample(3, 1) = 'h3  
ifExample(1, 3) = 'h3  
ifExample(1, 0) = 'h2 

 
Finally, return statements can be directly present in if-else branches. For example:  

 
In [32]:  function Bit#(4) max4_ret(Bit#(4) a, Bit#(4) b);  

if (a > b) return a;  
else return b;  

endfunction 
 

%%eval max4_ret(3, 8) 
 

max4_ret(3, 8) = 'h8 
 

Synthesis: Just like conditional expressions, if statements are translated to multiplexers, but their synthesis is less obvious. 
 

All expressions within the if statement are synthesized, then each variable assigned to within the if statement is followed by a multiplexer to 
select between the value assigned within the if branch (if the predicate is true) and the value before the if branch (if the predicate is false). 

 
If-else statements are similar: the if and else branches are both synthesized. For variables assigned to in both branches, the multiplexer 
selects between the value in the if branch and the value in the else branch; for variables assigned to in only one of the branches, the 
multiplexer selects between the value within the branch and the old value. 

 
It bears repeating that if statements do not change the basic fact that there is no conditional execution in combinational circuits, as 
we saw with conditional expressions. All branches of the if statement are synthesized and evaluated, even though at most one branch 
takes effect. 

 
Another way to see this is that if statements can be systematically rewritten to conditional expressions. For example, here are the rewritten 
max4 implementations following the procedure above: 



In [33]:  function Bit#(4) max4_rewritten(Bit#(4) a, Bit#(4) b);  
Bit#(4) result = b;  
// The next two lines are a rewrite of if (a > b) result 
= a; Bool ifCond = (a > b); 
result = ifCond? a : 
result; return result; 

endfunction 
 

// Alternative implementation using if-else  
function Bit#(4) max4_alt_rewritten(Bit#(4) a, Bit#(4) b);  

Bit#(4) result;  
// The next two lines are a rewrite of if (a > b) result = a; else result 
= b; Bool ifCond = (a > b); 
result = ifCond? a : 
b; return result; 

endfunction 
 

%%eval max4_rewritten(3, 8)  
%%eval max4_alt_rewritten(3, 8) 

 
max4_rewritten(3, 8) = 'h8  
max4_alt_rewritten(3, 8) = 'h8 

 
Finally, when a function has multiple return statements in if-else branches (as in max4_ret above), the output value is selected using 
multiplexers in the same way as is done in an if-else statement. 

 
Case statements 

 
Case statements have a similar syntax to case expressions: 

 
case (compExpr)  

value1 : stmt1;  
value2 : stmt2;  
...  
[ default : defaultStmt; 

] endcase 
 

A case statement tests compExpr against the value_i values, and on a match with value_i , stmt_i takes effect. If there are no 
matches and the optional default label is specified, the optional defaultStmt takes effect. Unlike case expressions, case statements 
need not enumerate all values or specify a default statement. If there are no matches and no default, none of the statements takes effect. 

 
For example, here is the cmp#(1) function from Section 9 using a case statement instead of a case expression:  

 
In [34]: function CmpRes cmp_case#(1)(Bit#(1) a, Bit#(1) 

b); CmpRes res = Equal; 
case ({a, b})  

2'b01: res = LessThan;  
2'b10: res = GreaterThan;  

endcase  
return res;  

endfunction 
 

%%eval cmp_case#(1)(0, 0)  
%%eval cmp_case#(1)(0, 1)  
%%eval cmp_case#(1)(1, 0) 

 
cmp_case#(1)(0, 0) = Equal  
cmp_case#(1)(0, 1) = LessThan  
cmp_case#(1)(1, 0) = GreaterThan 

 
Synthesis: Case statements are synthesized similarly to if statements: all branches are synthesized, and a multiplexer is used for each 
value assigned within the case statement to select the value from the right branch. 

 
For loops 

 
For loop statements allow compactly expressing a sequence of similar statements. They have the usual syntax: 

 
for (Integer iVar = initExpr; testExpr; iVar = updExpr) stmt; 



where iVar is the name of the Integer induction variable; initExpr is the induction variable’s initial value; testExpr is a Bool 
expression that denotes whether to stop iterating; updExpr is evaluated after each iteration to update iVar ; and stmt is the statement 
executed on each iteration. For example: 
 

Bit#(6) w;  
for (Integer i=0; i<6; i=i+1)  

w[i] = x[i % 2]; 
 
For loops are not like general loops in programming languages. Whereas general loops may iterate on values unknown at compile time 
and may have an unknown number of iterations, Minispec for loops have a known iteration count and are unrolled at compile time. Note 
how the induction variable must be an Integer , which forces the iteration count to be evaluable at compile time. These restrictions make 
for loops implementable with combinational logic. 
 
Synthesis: For loops are unrolled at compile time, i.e., expanded into a fixed sequence of iterations. Then, each iteration is synthesized as 
usual. 
 
For example, the above loop synthesizes to: 
 

w[0] = z[0];  
w[1] = z[1];  
w[2] = z[0];  
w[3] = z[1];  
w[4] = z[0];  
w[5] = z[1]; 

 
Example 1: Ripple-carry adder. The function below implements an n-bit ripple-carry adder using a for loop instead of recursion, as we 
used to do before. 



In [35]: function Bit#(n+1) rca_loop#(Integer n)(Bit#(n) a, Bit#(n) b, Bit#(1) 
carryIn); Bit#(n+1) result = zeroExtend(carryIn); 
for (Integer i = 0; i < n; i = i + 1)  

result[i+1:i] = fullAdder(a[i], b[i], result[i]);  
return result;  

endfunction 
 
%%eval rca_loop#(16)(42, 86, 0) 

 
// Can you see the carry chain in the 4-bit adder 
below? %%synth rca_loop#(4) -O0 -l extended -v 

 
rca_loop#(16)(42, 86, 0) = 'h00080  
Compiling function rca_loop#(4)  
Synthesizing circuit with std cell library = extended, O0, target delay = 1 ps 
 
Gates: 24  
Area: 26.60 um^2  
Critical-path delay: 127.77 ps 
 
Critical path: a[0] -> out[3]   

Gate/port Fanout Gate delay (ps) Cumulative delay (ps) 
--------- ------ --------------- --------------------- 

a[0] 3 8.7 8.7 
NAND2 1 9.1 17.8 
NAND3 3 21.2 39.0 
NAND2 1 10.7 49.7 
NAND3 3 21.4 71.1 
NAND2 1 10.7 81.8 
NAND3 3 21.4 103.2 
XNOR2 1 24.6 127.8 

out[3] 0 0.0 127.8 

Area breakdown:    
Gate type Gates Area/gate (um^2) Area/type (um^2) 
--------- ----- ---------------- ---------------- 

NAND2 12 0.798 9.576 
NAND3 4 1.064 4.256 
XNOR2 8 1.596 12.768 
Total 24  26.600 

 
Circuit diagram:  



 
Synthesis complete 
 
This adder function produces the same circuit as our previous recursive definition: both have a carry chain. However, beware that when 
functions have a natural tree implementation, for loops tend to force a slower, chained implementation, as we will see in the next example. 
 
Example 2: Comparator. The function below implements an n-bit comparator using a for loop.  
 

In [36]: function CmpRes cmp_loop#(Integer n)(Bit#(n) a, Bit#(n) 
b); CmpRes result = Equal; 
for (Integer i = n -1 ; i >= 0; i = i - 1) begin  

if (result == Equal && a[i] == 0 && b[i] == 1) result = LessThan; if 
(result == Equal && a[i] == 1 && b[i] == 0) result = GreaterThan;  

end  
return result;  

endfunction 
 
%%eval cmp_loop#(32)(42, 57)  
%%eval cmp_loop#(32)(42, 42) 

 
cmp_loop#(32)(42, 57) = LessThan  
cmp_loop#(32)(42, 42) = Equal 
 
Though shorter than our previous recursive implementation, this version produces a different, slower circuit: the loop version synthesizes 
to a long chain of multiplexers on result (one per if statement, two per iteration), so the number of logic levels grows linearly with the 
number of bits. By contrast, our previous cmp#(n) implementation synthesizes to a tree of function calls. 
 
You can synthesize both versions to see which is faster: 



In [37]:  // Without logic optimization  
%%synth cmp_loop#(8) -O0  
%%synth cmp#(8) -O0 

 
Compiling function cmp_loop#(8)  
Synthesizing circuit with std cell library = basic, O0, target delay = 1 ps 

 
Gates: 79  
Area: 56.39 um^2  
Critical-path delay: 272.53 ps 

 
Critical path: a[7] -> out[0]   

Gate/port Fanout Gate delay (ps) Cumulative delay (ps) 
--------- ------ --------------- --------------------- 

 a[7] 3 7.6 7.6 
 INV 2 8.2 15.8 
 NOR2 2 14.8 30.6 
 NOR2 1 7.7 38.3 

NAND2 1 8.0 46.3 
 NOR2 3 19.7 66.0 

NAND2 2 13.2 79.2 
NAND2 1 10.6 89.8 

 NOR2 3 9.0 98.8 
NAND2 2 13.1 111.9 
NAND2 1 10.6 122.5 

 NOR2 3 15.9 138.4 
NAND2 2 13.2 151.6 
NAND2 1 10.5 162.1 

 NOR2 3 9.1 171.2 
NAND2 2 12.8 184.0 
NAND2 1 10.6 194.6 

 NOR2 3 16.1 210.7 
NAND2 2 13.2 223.9 
NAND2 1 10.6 234.5 

 NOR2 3 9.0 243.5 
NAND2 2 12.7 256.2 
NAND2 1 10.6 266.8 

 NOR2 1 5.7 272.5 
out[0] 0 0.0 272.5 

Area breakdown:     
Gate type Gates Area/gate (um^2) Area/type (um^2) 
--------- ----- ---------------- ---------------- 

 INV 25 0.532 13.300 
NAND2 31 0.798 24.738 

 NOR2 23 0.798 18.354 
Total 79  56.392 

 
Synthesis complete  
Compiling function cmp#(8)  
Synthesizing circuit with std cell library = basic, O0, target delay = 1 ps 

 
Gates: 78  
Area: 55.59 um^2  
Critical-path delay: 97.54 ps 

 
Critical path: b[7] -> out[1]   

Gate/port Fanout Gate delay (ps) Cumulative delay (ps) 
--------- ------ --------------- --------------------- 

 b[7] 2 5.3 5.3 
 INV 1 5.9 11.2 
 NOR2 2 14.3 25.5 
 NOR2 2 10.9 36.4 

NAND2 2 12.6 49.0 
 NOR2 2 19.5 68.5 

NAND2 1 9.7 78.2 
 NOR2 1 14.5 92.7 
 NOR2 1 4.8 97.5 

out[1] 0 0.0 97.5 

Area breakdown:     
Gate type Gates Area/gate (um^2) Area/type (um^2) 
--------- ----- ---------------- ---------------- 

 INV 25 0.532 13.300 



 
NAND2 25 0.798 19.950 
NOR2 28 0.798 22.344 
Total 78  55.594 

 
Synthesis complete  

 
In [38]:  // With logic optimization (default)  

%%synth cmp_loop#(8) -O1  
%%synth cmp#(8) -O1 

 
Compiling function cmp_loop#(8)  
Synthesizing circuit with std cell library = basic, O1, target delay = 1 ps 

 
Gates: 62  
Area: 44.42 um^2  
Critical-path delay: 87.18 ps 

 
Critical path: a[7] -> out[1]   

Gate/port Fanout Gate delay (ps) Cumulative delay (ps) 
--------- ------ --------------- --------------------- 

a[7] 1 2.8 2.8 
INV 2 8.1 10.9 

NOR2 1 9.3 20.2 
INV 1 5.1 25.3 

NAND2 2 9.6 34.9 
NOR2 1 9.8 44.7 

NAND2 1 8.4 53.1 
NOR2 2 16.2 69.3 

NAND2 1 9.5 78.8 
NAND2 1 8.4 87.2 

out[1] 0 0.0 87.2 

Area breakdown:    
Gate type Gates Area/gate (um^2) Area/type (um^2) 
--------- ----- ---------------- ---------------- 

INV 19 0.532 10.108 
NAND2 24 0.798 19.152 
NOR2 19 0.798 15.162 

Total 62  44.422 
 

Synthesis complete  
Compiling function cmp#(8)  
Synthesizing circuit with std cell library = basic, O1, target delay = 1 ps 

 
Gates: 74  
Area: 54.80 um^2  
Critical-path delay: 89.15 ps 

 
Critical path: b[6] -> out[1]   

Gate/port Fanout Gate delay (ps) Cumulative delay (ps) 
--------- ------ --------------- --------------------- 

b[6] 3 7.6 7.6 
INV 2 8.2 15.8 

NOR2 1 10.4 26.2 
NOR2 2 13.6 39.8 

NAND2 2 12.1 51.9 
NOR2 1 12.7 64.6 

NAND2 1 8.6 73.2 
NAND2 1 8.9 82.1 
NAND2 1 7.1 89.2 

out[1] 0 0.0 89.2 

Area breakdown:    
Gate type Gates Area/gate (um^2) Area/type (um^2) 
--------- ----- ---------------- ---------------- 

INV 16 0.532 8.512 
NAND2 32 0.798 25.536 
NOR2 26 0.798 20.748 

Total 74  54.796 
 

Synthesis complete 
 

As you can see, in this case %%synth 's logic optimizations are smart enough to produce similar circuits, but without optimization (-O0 
flag), the loop version is significantly slower. 



NOTE: You may experience very long synthesis times when synthesizing cmp_loop#(n) for large values of n (e.g., 32). This is because 
the tools have trouble with very long chains of if statements that assign to the same variable. For this reason, please avoid using long 
chains of if statements in your code. 

 
Don't care values 

 
A question mark ( ? ) denotes a special don’t-care value. Don’t-care values can be assigned to variables of any type. A don’t-care denotes 
that the value is irrelevant; the compiler is free to pick any value for it. This flexibility often lets the compiler produce better circuits. For 
example:  

 
In [39]:  function Bit#(4) dontCareExample(Bit#(4) a, Bool s) =  

s? ? : ~a; 
 

%%synth dontCareExample -v 
 

Compiling function dontCareExample  
Synthesizing circuit with std cell library = basic, O1, target delay = 1 ps 

 
Gates: 4  
Area: 2.13 um^2  
Critical-path delay: 7.64 ps 

 
Critical path: a[0] -> out[0]   

Gate/port Fanout Gate delay (ps) Cumulative delay (ps) 
--------- ------ --------------- --------------------- 

a[0] 1 2.8 2.8 
INV 1 4.8 7.6 

out[0] 0 0.0 7.6 

Area breakdown:    
Gate type Gates Area/gate (um^2) Area/type (um^2) 
--------- ----- ---------------- ---------------- 

INV 4 0.532 2.128 
Total 4  2.128 

 
Circuit diagram: 
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Synthesis complete 
 

In s? ? : ~a , to minimize the amount of logic, the compiler picks ~a for the don't-care value ? . This leaves s? 
~a : ~a , which can be simplified to ~a . As you can see, the synthesized circuit ignores s and is just ~a . 

 
 

Conclusion 
 

Putting all these features together, we have seen how Minispec lets you design combinational circuits with 
programming constructs that you are already familiar with: functions, function composition, expressions, variables, 
conditional statements and loops, etc. 

 
The result is that Minispec code looks similar to that of a serial, software programming language. This makes the code 
readable and easily understandable, even though it is describing an inherently parallel circuit. However, to design good 
hardware, it is crucial to understand how these constructs are synthesized to combinational logic. For example, 
functions are always inlined, for loops are always unrolled, and there is no conditional execution (the expressions in all 
paths of conditional expressions and statements are evaluated). In other words: never forget that you are describing 
hardware, not software. 

 
This tutorial has covered combinational logic only. The (upcoming) sequential logic tutorial builds on this tutorial to show 
you how to design sequential (i.e., stateful) circuits. This tutorial omits some of the finer details of the Minispec 
language; to dig deeper, please check the Minispec reference 
(https://6191.mit.edu/_static/fall23/resources/references/minispec_reference.pdf).  


