
6.191 Spring 2023 - 1 of 22 - Quiz #2

M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.191 Computation Structures
Spring 2023

Quiz #2

Name

Solutions
Athena login name

Score

Recitation section
o WF 10, 34-302 (Alexandra) o WF 2, 34-302 (Boom) o opt-out
o WF 11, 34-302 (Alexandra) o WF 3, 34-302 (Boom)
o WF 12, 34-302(Georgia) o WF 12, 35-308 (Keshav)
o WF 1, 34-302 (Georgia) o WF 1, 35-308 (Keshav)

Please enter your name, Athena login name, and recitation section above. Enter your answers
in the spaces provided below. Show your work for potential partial credit. You can use the extra
white space and the back of each page for scratch work.

1 /16
2 /16
3 /17
4 /19
5 /19
6 /13

6.191 Spring 2023 - 2 of 22 - Quiz #2

Problem 1. Sequential Circuits in Minispec (Stop-and-wait protocol) (16 points)

A Sender is trying to send a sequence of data to a Receiver by sending a signal through the air.
Usually, data from the Sender reaches the Receiver in a finite amount of time. However,
sometimes, the data might take longer to transmit or get completely lost in the air.

To ensure that the Receiver receives and processes all the data in-order, the Sender and Receiver
communicate using a variant of a Stop-and-wait protocol.

The Sender sends a sequence of data packets. As shown in the DataPacket struct below, each
data packet contains a 32-bit word of data, and an index, idx, that identifies the position of the
packet in the sequence. The index begins at 0 and increments by 1 for every new data word sent.
Upon receiving a DataPacket, the Receiver sends back an AckPacket to signal that they have
successfully received the data. The structure of DataPacket and AckPacket is defined as follows:

typedef Bit#(32) Word;

typedef struct {
 Word idx; // index of this data packet
 Word data; // the content of the data
} DataPacket;

typedef struct {
 Word idx; // index of the data packet to acknowledge
} AckPacket;

(A) (8 points) Complete the implementation of a Sender module in Minispec, which sends a fixed

sequence of 32 data words. These words are specified as a Vector#(32, Word) data. To
send a message according to the stop-and-wait protocol, the Sender should:
• Iterate through the data vector from index 0 up until index 31.
• For each data index i,

1. Construct a DataPacket that contains data[i] and whose index field is i.
2. Send the DataPacket right away.
3. Retransmit the same DataPacket every 3 cycles until it receives the AckPacket

with same index field as the DataPacket index that the Sender sent.
4. Once the Sender receives the AckPacket with the same index, it moves on to

send DataPacket corresponding to the next index.
• After receiving an AckPacket for index 31, set finished to True to stop sending data.

6.191 Spring 2023 - 3 of 22 - Quiz #2

Fill in the Minispec code for the Sender module below so that it conforms to the stop-and-wait
protocol described above. You may use all Minispec operators, including +, -, *, /, and %.

// “data” stores all the data to be sent
module Sender(Vector#(32, Word) data);

 // AckPacket Received by the sender each cycle
 input Maybe#(AckPacket) in_ACK default = Invalid;

 Reg#(Word) send_idx(0);
 Reg#(Word) timer(0);
 Reg#(Bool) finished(False);

 rule tick;
 if(isValid(in_ACK)) begin
 let ack_idx = _ fromMaybe(?, in_ACK).idx ______;

 if (___ack_idx == send_idx __________) begin

 send_idx <= ___ send_idx + 1______________;

 finished <= __ send_idx >= 31; or send_idx == 31;

 timer <= 0;
 end
 end else begin
 timer <= __(timer == 0)? 2: timer-1; or (timer + 1)% 3;
 end

 endrule

 // DataPacket to transmit each cycle
 method Maybe#(DataPacket) out_data;
 return (timer == 0 && !finished)? Valid(DataPacket{

 idx : ___ send_idx ___________________________,

 data : ___ data[send_idx]______________________
 }) : Invalid;
 endmethod

endmodule

6.191 Spring 2023 - 4 of 22 - Quiz #2

The Receiver module is defined with the following Minispec code. Note that while packets
are sent in order, they are not necessarily received in order.

module Receiver;

 // DataPacket received by the receiver each cycle
 input Maybe#(DataPacket) in_data default = Invalid;

 Reg#(Maybe#(AckPacket)) to_send(Invalid);
 Reg#(Word) expected_idx(0);

 rule tick;
 Maybe#(AckPacket) packet_to_send = Invalid;
 if(isValid(in_data)) begin
 // Receiver receives a DataPacket
 let in_idx = fromMaybe(?, in_data).idx;
 if (in_idx <= expected_idx) begin
 packet_to_send = Valid(AckPacket{idx : in_idx});
 if (in_idx == expected_idx) begin
 // process(fromMaybe(?, in_data)).data somehow
 expected_idx <= expected_idx + 1;
 end
 end
 end
 to_send <= packet_to_send;
 endrule

 // AckPacket to transmit each cycle
 method Maybe#(AckPacket) out_ACK = to_send;
endmodule

(B) (8 points) Fill in the timing chart below with the register values and outputs for the first 9
cycles of the Receiver module. If the value is not known, write a “?” in the slot.

Cycle 0 1 2 3 4 5 6 7 8

isValid(in_data) False True False True True True False True True

fromMaybe(?,in_data).idx ? 0 ? 0 1 0 ? 2 1

expected_idx 0 0 1 1 1 2 2 2 3

isValid(to_send) False False True False True True True False True

fromMaybe(?,to_send).idx ? ? 0 ? 0 1 0 ? 2

6.191 Spring 2023 - 5 of 22 - Quiz #2

Problem 2. Arithmetic Pipelines (16 points)

You are given a module named “F.” This module has three inputs, X,
Y and Z, and one output, A. You are told that the circuit functions,
but its throughput is too low. You decide to pipeline the circuit.

For each of the questions below, please create a valid K-stage pipeline of the given circuit. Each
component in the circuit is annotated with its propagation delay in nanoseconds. Show your
pipelining contours and place large black circles (●) on the signal arrows to indicate the
placement of pipeline registers. Give the latency and throughput of each design, assuming ideal
registers (tPD=0, tSETUP=0). Remember that our convention is to place a pipeline register on each
output.

(A) (1 point) Based on the circuit shown in part (B), what is the propagation delay of the whole

circuit as-is without pipelining?

t_PD (ns): ___30_____

(B) (4 points) Show a maximum-throughput 2-stage pipeline using a minimal number of

registers. What are the latency and throughput of the resulting circuit? Pay close attention to
the direction of each arrow.

Latency (ns): _____30______

Throughput (ns-1): _____1/15_____

6.191 Spring 2023 - 6 of 22 - Quiz #2

(C) (4 points) Show a maximum-throughput 4-stage pipeline using a minimal number of
registers. What are the latency and throughput of the resulting circuit?

Latency (ns): _____32_____

Throughput (ns-1): _____1/8_____

(D) (4 points) Show a maximum-throughput pipeline that uses a minimum number of pipeline

stages. What are the latency and throughput of the resulting circuit?

Latency (ns): _____42_____

Throughput (ns-1): ____1/7______

6.191 Spring 2023 - 7 of 22 - Quiz #2

(E) (3 points) Now, we want to connect our max throughput Module F (from part D) to another
module that does additional operations on A, the output of F. We have three separate
pipelined implementations, J, K and L, that implement the same operations but with different
throughputs and number of pipeline stages.

Module Throughput (ns-1) Number of Pipeline Stages

J 1/6 3
K 1/7 2
L 1/8 1

When connecting the Module F to one of Module J, K, or L, you are trying to maximize
throughput. If two options have equal throughput, as a secondary objective you want to minimize
latency. Which module would you append on the output of F, Module J, K, or L and why did you
select that one? What would the throughput and total latency of the combined device be?

Module (circle one): J (T = 1/6) K (T = 1/7) L (T = 1/8)

Throughput (ns-1): _____1/7_____

 Total Latency (ns):_____ 56_____

Why did you choose that module?

Explanation:

The highest possible throughput for Module F is 1/7 because we can’t break up the block
with propagation delay 7, which means that there is no point in picking Module J, which
has the best throughput of the 3 modules. Instead, we want to pick Module K because it
keeps the 1/7 throughput without using any unnecessary registers like picking Module J
would. We do not pick Module L because that would worsen the throughput of the
combined device.

6.191 Spring 2023 - 8 of 22 - Quiz #2

Problem 3: All right then. Keep your secrets. (17 points)

Cafecafe likes to be updated on all the latest gossip going around in her high school. However,
she trusts no one with her secrets and would like to build a processor that will only give out her
secret value to a user that knows her secret passcode. She figures she needs a register that holds
her secret value, and some way to transfer the contents of that secret register into another, user-
accessible general-purpose register when needed. Let us help her build such a processor.

We start with this generic single-cycle RISC-V processor, similar to the one you have seen in
lecture.

aluVal1

pcSel

PC
Instruction

Memory
+4

Instruction
Decoder

Register File

bSel

ALU/Br

Data
Memory

wd
Se
l

rs1 rs2

imm

aluVal2

addr

rVal2rVal1

dataIn rVal2
dataOut

wd

rd

inst

pc

pc + 4

pc + 4

dataOut

aluRes

pc + 4

brTaken ? pc + imm : pc + 4
(branchTarget)

{JT[31:1],
1’b0}

aluFunc
brFunc
bSel

memFunc
wdSel
rfWen
pcSel

JT

aluFunc
brFunc

+ pc
immpc + imm

Simplified
Single Cycle

RISCV
Processor

rfWen

brTaken

0 1 2

0

1

2

0 1

memFunc memEn

6.191 Spring 2023 - 9 of 22 - Quiz #2

As a reminder, for single-cycle per instruction operation without pipelining, assume that the
memory reads (both instruction and data) are combinational, as well as reads from the
register file. The instruction decoder decodes the instruction into the following fields:

Field Description Possible Values
imm Immediate Appropriate Constant (assume proper sign extension)
rs1, rs2 Source Registers Integers between 0 and 31
rd Destination Register Integer between 0 and 31
aluFunc ALU Function Add, Sub, And, Or, Xor, Sll, Sra, Srl
brFunc Branch Comp. Function Eq, Neq, Lt, Leq, Gt, Geq
bSel ALU/Br Operand 2

Select
0 (rVal2), 1 (imm),
2, 3, 4… (others, if extended in later parts)

memFunc Data Memory Function Lw, Sw, Lh, Lhu, Sh, Lb, Lbu, Sb
memEn Memory Enable True/False
wdSel Write Data Select 0 (pc + 4), 1 (dataOut), 2 (aluRes),

3, 4, 5… (others, if extended in later parts)
rfWen Register File Write

Enable
True/False

pcSel Next PC Select 0 (jumpTarget), 1 (branchTarget), 2 (pc + 4),
3, 4, 5… (others, if extended in later parts)

(A) (2 points) As a warmup, complete the table on the right with what the decoded control signals

should be for the jalr x7, 0x10(x9) instruction shown. Use possible values from the
above table. Write “?” for don’t-care values. The table on the left is provided as an example.

ad
d
x2
,
x1
9,
 x
5

Field Value
imm ?
rs1 19
rs2 5
rd 2
aluFunc Add
brFunc ?
bSel 0 (rVal2)
memFunc ?
memEn False
wdSel 2 (aluRes)
rfWen True
pcSel 2 (pc + 4)

ja
lr
 x
7,
 0
x1
0(
x9
)

Field Value
imm 0x10
rs1 9
rs2 ?
rd 7
aluFunc Add
brFunc ?
bSel 1 (imm)
memFunc ?
memEn False
wdSel 0 (pc + 4)
rfWen True
pcSel 0 (jumpTarget)

6.191 Spring 2023 - 10 of 22 - Quiz #2

(B) (3 points) Next, let us add support to be able to read the secret register that Cafecafe has
added to the processor. Her criteria for being able to access this register is simple. One uses
the following instruction (load secret) in order to access it.

lsecret rd, rs1; // reg[rd] <= (reg[rs1] == 0xcafecafe) ? secret value : 0

If the register rs1 contains the value 0xcafecafe (this being the secret passcode) when this
instruction is executed, then the register rd will get the secret value written to it. Otherwise, a
zero is written to it. The secret register that Cafecafe has added to her processor works as follows:
if its rdEn input is asserted, then it outputs the secret value, otherwise it outputs a zero.

Connect the wires connected to Secret Register to appropriate places on the above diagram. You
cannot add additional hardware, other than wires and constants, to this processor. Thus, you need
to find a way to use the existing comparator to perform the comparison with 0xcafecafe. The
multiplexers have been widened for your convenience. If you choose to add additional inputs to
multiplexers, indicate so clearly in part (C) if they are to be selected by the multiplexer.
Connect brTaken to rdEn, connect secret value to input 3 of wdSel, and make a constant input to
bSel 0xcafecafe.

aluVal1

pcSel

PC
Instruction

Memory
+4

Instruction
Decoder

Register File

bSel

ALU/Br

Data
Memory

wd
Se
l

rs1 rs2

imm

aluVal2

addr

rVal2rVal1

dataIn rVal2
dataOut

wd

rd

inst

pc

pc + 4

pc + 4

dataOut

aluRes

pc + 4

brTaken ? pc + imm : pc + 4
(branchTarget)

aluFunc
brFunc
bSel

memFunc
wdSel
rfWen
pcSel

JT

aluFunc
brFunc

+ pc
immpc + imm

rfWen

brTaken

Secret Register
rdEn

secret value

0 1 2

0

1

2

0 1

{JT[31:1],
1’b0}

memFunc memEn

6.191 Spring 2023 - 11 of 22 - Quiz #2

(C) (3 points) What does the decoder need to output for the following fields when it sees an
lsecret instruction shown below?

ls
ec
re
t
x6
,
x9

Field Value
imm ?
rs1 9
rs2 ?
rd 6
aluFunc ?
brFunc Eq
bSel 2 (constant 0xcafecafe)
memFunc ?

memEn False
wdSel 3 (secret value)
rfWen True
pcSel 2 (pc + 4)

(D) (6 points) Uh oh! Cafecafe’s gossip secrets are already outdated. She wants to modify her

processor so that she can update the secret value by supplying the correct password. She
intends to use the following instruction (store secret) to update the secret value.

ssecret rd, rs1, rs2;

// authenticated = (reg[rs1] == 0xcafecafe);
// if (authenticated) secret value <= reg[rs2];
// red[rd] <= authenticated;

If the register rs1 contains the value 0xcafecafe, ssecret updates the secret value to the
value of register rs2. Register rd stores the result of this operation: 1 if successful, 0 if failed.
The secret register now works as follows: if its rdEn input is asserted, then it outputs the secret
value, otherwise it outputs a zero (as before). If wrEn is asserted, the register updates its secret
value to the secret value to write input.

Do we need to output an additional field/signal from the instruction decoder? If yes, why did
lsecret not need this additional field? If no, how can the processor stop undesirable values from
being written to the secret value register when the instruction being executed isn’t ssecret? You
may want to implement the necessary hardware changes before answering these questions.

Do we need an additional field? Circle: YES NO

If yes, provide a descriptive name for the field:____ secretEn_____

6.191 Spring 2023 - 12 of 22 - Quiz #2

Explanation:
Yes, we do need an additional field because the wrEn signal needs to be (secretEn && brTaken)
to stop the secret value from being updated if the instruction is not ssecret or if the comparison
failed. lsecret did not need this field because the decoder can simply set wdSel to something else
or rfWen to False to stop the secret value from being written to the register file.

Next, using no more than one 2-input (1-bit wide) additional AND gate, wire up the two
new inputs of the secret register (wrEn and secret value to write) into the processor
diagram. Make sure to also show all your changes from part (B). If you add any
additional inputs to a multiplexer, make sure to indicate them clearly in part (E) if they
are to be selected by the multiplexer.

In addition to the previous connections, also need to connect wrEn to (secretEn && brTaken).
Connect brTaken to yet another input of wdSel, input 4. Connect rVal2 to secret value to write.

wd
Se
l aluVal1

pcSel

PC
Instruction

Memory
+4

Instruction
Decoder

Register File

bSel

ALU/Br

Data
Memory

rs1 rs2

imm

aluVal2

addr

rVal2rVal1

dataIn rVal2
dataOut

wd

rd

inst

pc

pc + 4

pc + 4

dataOut

aluRes

pc + 4

brTaken ? pc + imm : pc + 4
(branchTarget)

aluFunc
brFunc
bSel

memFunc
wdSel
rfWen
pcSel

aluFunc
brFunc

+ pc
immpc + imm

rfWen

brTaken

Secret Register
rdEn

secret value

wrEn

secret value
to write

0 1 2

0

1

2

0 1

{JT[31:1],
1’b0}

JT

memFunc memEn

6.191 Spring 2023 - 13 of 22 - Quiz #2

(E) (3 points) Finally, provide the field values that the decoder needs to generate when it
encounters the following instruction. Write your new field name and field value in the
blank row if you chose yes for part (D).

ss
ec
re
t
x1
4,
 x
12
,
x8

Field Value
imm ?
rs1 12
rs2 8
rd 14
aluFunc ?
brFunc Eq
bSel 2 (constant 0xcafecafe)
memFunc ?
memEn False
wdSel 4 (brTaken)
rfWen True
pcSel 2 (pc + 4)
secretEn True

6.191 Spring 2023 - 14 of 22 - Quiz #2

Problem 4: Fun with Caches (19 points)

Consider a 2-way set associative cache with 4 sets and a block size of 4. Assume that addresses
and data words are 32 bits.

(A) (3 points) To ensure the best cache performance, which address bits should be used for the

block offset, the cache index, and the tag field?

Address bits used for byte offset: A[1 : 0]

Address bits used for block offset: A[3 : 2]

 Address bits used for cache index: A[5 : 4]

Address bits used for tag field: A[[31 : 6]

We want to analyze the performance of this 2-way set associative cache on the following
assembly program which computes the average of two arrays, A and B, and stores the results in a
third array, C so that C[i] = (A[i] + B[i])/2. Each array has a total of 8 elements. The
base address of array A is 0x1000, of array B is 0x2040, and of array C is 0x3020.

. = 0x100 // The following code starts at address 0x100

// Assume the following registers are initialized:
// x1=0 (loop index)
// x2=8 (number of array elements)
// x3=0x1000 (base address of array A)
// x4=0x2040 (base address of array B)
// x5=0x3020 (base address of array C)

loop:

lw x6, 0(x3) // x6 = A[i]
lw x7, 0(x4) // x7 = B[i]
add x8, x6, x7 // x8 = A[i] + B[i]
srli x8, x8, 1 // x8 = (A[i] + B[i])/2
sw x8, 0(x5) // C[i] = (A[i] + B[i])/2
addi x3, x3, 4 // x3 = address of next element of A
addi x4, x4, 4 // x4 = address of next element of B
addi x5, x5, 4 // x5 = address of next element of C
addi x1, x1, 1 // increment loop index
blt x1, x2, loop // repeat loop until all elements are averaged

6.191 Spring 2023 - 15 of 22 - Quiz #2

(B) (8 points) Assume the cache is empty before execution of this code (i.e., all valid bits are 0).
Assume that the cache uses a least-recently used (LRU) replacement policy, and that all cache
lines in Way 0 are currently the least-recently used. Fill in, or update, all the known values
of the LRU bit, the dirty bit (D), the valid bit (V), the Tag, and the data words after one loop
iteration (after executing the blt instruction for the first time). For word fields, fill them in
with the opcode if they are instructions (e.g., blt) or fill them in with the array element if
they are data (e.g., B[2]).
The loop code is repeated here for your convenience:

. = 0x100 // The following code starts at address 0x100
loop:

lw x6, 0(x3) // x6 = A[i]
lw x7, 0(x4) // x7 = B[i]
add x8, x6, x7 // x8 = A[i] + B[i]
srli x8, x8, 1 // x8 = (A[i] + B[i])/2
sw x8, 0(x5) // C[i] = (A[i] + B[i])/2
addi x3, x3, 4 // x3 = address of next element of A
addi x4, x4, 4 // x4 = address of next element of B
addi x5, x5, 4 // x5 = address of next element of C
addi x1, x1, 1 // increment loop index
blt x1, x2, loop // repeat loop until all elements are averaged

LRU
1
1
0
0

Way 0
D V Tag Word 3 Word 2 Word 1 Word 0

0 1 0x4 srli add lw lw

0 1 0x4 addi addi addi sw

1 1 0xC0 C[3] C[2] C[1] C[0]

 0

Way 1
D V Tag Word 3 Word 2 Word 1 Word 0

0 1 0x81 B[3] B[2] B[1] B[0]

 0

0 1 0x4 blt addi

 0

6.191 Spring 2023 - 16 of 22 - Quiz #2

(C) (4 points) During the execution of the first iteration of the loop, how many instruction hits
and instruction misses occurred, and how many data hits and data misses occurred?

Number of Instruction Hits in First Loop Iteration:______ 7______

Number of Instruction Misses in First Loop Iteration:_____ 3______

Number of Data Hits in First Loop Iteration:_____ 0______

Number of Data Misses in First Loop Iteration:_____ 3______

(D) (4 points) During the execution of the second iteration of the loop, how many instruction
hits and instruction misses occurred, and how many data hits and data misses occurred?

Number of Instruction Hits in Second Loop Iteration:______ 10______

Number of Instruction Misses in Second Loop Iteration:_____ 0______

Number of Data Hits in Second Loop Iteration:____ 1______

Number of Data Misses in Second Loop Iteration:____ 2______

6.191 Spring 2023 - 17 of 22 - Quiz #2

Problem 5. Fake it till you write back (19 points)

Ben Bitdiddle writes the following loop in RISC-V assembly to sum the elements of an array:

loop: lw a1, 0(a2)
 add a0, a0, a1
 addi a1, a1, 4
 blt a1, a3, loop
 slli a0, a0, 2 # some instructions following the loop

xori a0, a0, 4
and a0, a0, a1

Ben runs this on a standard 5-stage pipeline (IF, DEC, EXE, MEM, WB). In this pipeline:

• Branches are predicted not taken.
• Branches and jumps are resolved in the EXE stage.
• Bypassing is done to the end of the DEC stage. Full bypassing is implemented.
• The data memory returns the result of a load in the WB stage.

(A) (4 points) Fill in the pipeline diagram below for cycles 100-109, assuming that at cycle 100

the lw a1, 0(a2) instruction is fetched. Assume the loop runs for many iterations, and
blt is taken. Draw arrows indicating each use of bypassing. Ignore cells shaded in gray.

(B) (2 points) How many cycles does each iteration of the loop take? For each loop iteration, how

many cycles are wasted due to stalls? How many are wasted due to annulments?

Number of cycles per loop iteration: ________8__________

Number of cycles per loop iteration wasted due to stalls: ________2__________

Number of cycles per loop iteration wasted due to annulments: _________2__________

 100 101 102 103 104 105 106 107 108 109

IF lw add addi addi addi blt slli xori lw add

DEC lw add add add addi blt slli NOP lw

EXE lw NOP
NOP

add addi blt
NOP NOP

MEM lw NOP NOP add addi blt NOP

WB lw NOP NOP add addi blt

6.191 Spring 2023 - 18 of 22 - Quiz #2

Ben studies his program and finds that most values in the array are 0. He modifies his 5-stage
pipeline to perform load value prediction to improve performance. In this pipeline:
• If an instruction uses the result of a load, but the load has not yet produced the result, the

pipeline predicts that the load will produce a 0. The bypass mux feeds value 0 to the
consumer instruction instead of stalling it. This instruction continues execution speculatively,
since it is using a predicted value.

• When a load reaches the WB stage, it checks whether the loaded value is 0. If it is not, and if
a later instruction speculatively used a 0 value, then we guessed incorrectly. To preserve
correct behavior, the pipeline flushes all instructions following the load. In the following
cycle, the pipeline restarts execution of the instruction following the load at the IF stage.

(C) (10 points) Fill in the pipeline diagrams below for cycles 100-109 for this new pipeline. As
before, assume that at cycle 100 lw a1, 0(a2) is fetched, and blt is taken. Draw arrows
indicating each use of bypassing and load value prediction. Ignore cells shaded in gray.

First, assume that lw a1, 0(a2) loads value 0 from memory.

Second, assume that lw a1, 0(a2) loads value 1 from memory.

 100 101 102 103 104 105 106 107 108 109

IF lw add addi blt slli xori lw add addi blt

DEC lw add addi blt slli NOP lw add addi

EXE lw add addi blt
NOP NOP lw add

MEM lw add addi blt NOP NOP lw

WB lw add addi blt NOP NOP

 100 101 102 103 104 105 106 107 108 109

IF lw add addi blt slli add addi blt slli xori

DEC lw
add

addi blt NOP add addi blt slli

EXE lw
add addi NOP NOP add addi blt

MEM lw add NOP NOP NOP add addi

WB lw NOP NOP NOP NOP add

6.191 Spring 2023 - 19 of 22 - Quiz #2

(D) (3 points) How many cycles does the execution of the loop take when load value prediction
succeeds vs. when it fails? What percentage of loaded values must be zero for this technique
to improve performance?

Cycles per loop iteration when load value prediction succeeds: _________6_________

Cycles per loop iteration when load value prediction fails: _________10_________

Percentage of 0s for load value prediction to help: _______>50%_______

Read after the quiz: It may seem that load value prediction is not very useful, because values are
hard to predict, zeros are not that common, and we’re not saving that many cycles per correct
prediction. But in more complex pipelines, more cycles can be saved per prediction, so this idea
sometimes makes sense! If you’re interested, see “Value Locality and Load Value Prediction”, by
Lipasti, Wilkerson, and Shen, ASPLOS 1996.

6.191 Spring 2023 - 20 of 22 - Quiz #2

Problem 6. Pipelined Processor Performance (13 points)

You were hired as a systems engineer by a processor manufacturing company that specializes in
the performance on map operations. Specifically, the company’s processors work best for
applying a function to each element of an array. Your boss thinks the processor with the best
performance is the one with the minimum number of cycles and your first task on your first day is
to design a processor with the best performance on the following benchmarking assembly code
(the function here is an addi instruction):

 // Assume that the starting address of the array
 // already exists in register x12 and the end
 // address of the array is in register x16.
loop: lw x10, 0(x12)
 addi x10, x10, 2
 sw x10, 0(x12)
 addi x12, x12, 4
 ble x12, x16, loop

some_other_code: add x3, x4, x5
 sub x5, x4, x3

Assume that the branch will always be taken. Branch decisions are resolved in the EXE stage.

(A) (4 points) As a proud 6.191 graduate, you know that you can build the beloved 5-stage

pipelined processor from lecture with stages IF, DEC, EXE, MEM, and WB. Your first
attempt is to build the baseline 5-stage pipelined processor without bypassing. Fill out the
pipeline diagram below for the first 10 cycles. Fill in any stalled/annulled stages with NOPs.
Calculate the number of cycles the processor takes to execute one iteration of the above loop.
Also, specify the number of cycles wasted per loop iteration due to stalls and annulments.
Additional pipeline diagrams are available at the end of the exam if needed.

Cycle 1 2 3 4 5 6 7 8 9 10

IF lw addi sw sw sw sw addi addi addi addi

DEC lw addi addi addi addi sw sw sw sw

EXE lw NOP NOP NOP addi NOP NOP NOP

MEM lw NOP NOP NOP addi NOP NOP

WB lw NOP NOP NOP addi NOP

Number of cycles per loop iteration: ______16_______

Number of cycles per loop iteration wasted due to stalls:______9_______

Number of cycles per loop iteration wasted due to annulments:______2_______

6.191 Spring 2023 - 21 of 22 - Quiz #2

(B) (5 points) Your boss was not impressed with the baseline 5-stage pipelined processor. So you
now decide to implement the same 5-stage pipelined processor but with full bypassing this
time. Fill out the pipeline diagram below for the first 10 cycles. Fill in any stalled/annulled
stages with NOPs and clearly show all your bypass arrows. Calculate the number of cycles
the processor takes to execute one iteration of the loop. Also, specify the number of cycles
wasted per loop iteration due to stalls and annulments. For your convenience, the assembly
code is repeated below:

// Assume that the starting address of the array
 // already exists in register x12 and the end
 // address of the array is in register x16.
loop: lw x10, 0(x12)
 addi x10, x10, 2
 sw x10, 0(x12)
 addi x12, x12, 4
 ble x12, x16, loop

some_other_code: add x3, x4, x5
 sub x5, x4, x3

Again, assume that the branch will always be taken.

Cycle 1 2 3 4 5 6 7 8 9 10

IF lw addi sw sw sw addi ble add sub lw

DEC lw addi addi addi sw addi ble add NOP

EXE lw NOP NOP addi sw addi ble NOP

MEM lw NOP NOP addi sw addi ble

WB lw NOP NOP addi sw addi

Number of cycles per loop iteration: ______9_______

Number of cycles per loop iteration wasted due to stalls:______2_______

Number of cycles per loop iteration wasted due to annulments:______2_______

6.191 Spring 2023 - 22 of 22 - Quiz #2

(C) (4 points) Your boss is impressed by your pipelined processor with full bypassing. However,
he tells you that you can still get better performance with your processor from part (B) by
modifying and/or reordering some of the instructions in the assembly code. If you think your
boss is right, please provide the modified assembly code below and calculate the number of
cycles per loop iteration. If you think your boss is wrong, argue why this is impossible below.

We have provided a pipeline diagram below that you can use to help answer the question, but
you do not need to fill the pipeline diagram.

Is your boss correct? Circle one: YES NO

If yes, modified loop assembly code:

loop:

lw x10, 0(x12)
addi x12, x12, 4

 addi x10, x10, 2
 sw x10, -4(x12)

ble x12, x16, loop

some_other_code: add x3, x4, x5
 sub x5, x4, x3

If yes, number of cycles per loop iteration: _____8________

If no, explanation: _______----------__

END OF QUIZ 2!

Cycle 1 2 3 4 5 6 7 8 9 10

IF lw addi addi sw sw ble add sub lw addi

DEC lw addi addi addi sw ble add NOP lw

EXE lw addi NOP addi sw ble NOP NOP

MEM lw addi NOP addi sw ble NOP

WB lw addi NOP addi sw ble

