
6.191 Fall 2023 - 1 of 20 - Quiz #2

M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.191 Computation Structures
Fall 2023

Quiz #2

Name

Athena login name

Score

Recitation section
o WF 10, 34-301 (Wendy) o WF 2, 34-303 (Jessica) o WF 12, 36-155 (Joey)
o WF 11, 34-301 (Wendy) o WF 3, 34-303 (Jessica) o WF 1, 36-155 (Joey)
o WF 12, 35-310 (Rona) o WF 10, 34-302 (Helen) o WF 1, 34-303 (Catherine)
o WF 1, 35-308 (Rona) o WF 11, 36-112 (Helen) o WF 2, 34-304 (Catherine)
 o opt-out

Please enter your name, Athena login name, and recitation section above. Enter your answers in the
spaces provided below. Show your work for potential partial credit. You can use the extra white space
and the back of each page for scratch work.

1 /14
2 /18
3 /16
4 /20
5 /16
6 /16

6.191 Fall 2023 - 2 of 20 - Quiz #2

Problem 1. Sequential Circuits in Minispec (14 points)

Dr. Hoofenshmirtz is making a WeatherInator to cause mischief in the Tri-State Area. Upon receiving a
WeatherForecast from the Tri-State Area Weather Service, the WeatherInator should generate weather
conditions on the subsequent 4 cycles. As shown in the structs below, each WeatherForecast received by
the WeatherInator contains an 8-bit temperature, and each WeatherCondition generated by the
WeatherInator contains a Climate field and a Precipitation field.

typedef enum { Hot, Cold} Climate;

typedef enum { Sun, Rain, Snow} Precipitation;

typedef struct {
 Climate c; // the Climate generated by the WeatherInator
 Precipitation p; // the Precipitation generated by the WeatherInator

} WeatherCondition;

typedef struct {
 Bit#(8) temperature; // the temperature of the WeatherForecast
} WeatherForecast;

(A) (6 points) Complete the implementation of a WeatherInator module in Minispec, which outputs a

WeatherCondition generated by the WeatherInator in the get_weather method. The WeatherInator
should operate as follows:

• If the forecasted temperature is 8'b00111100 or above, the WeatherInator should generate cold

and snowy weather on the next 2 cycles followed by cold and rainy weather for 2 cycles.
• If the forecasted temperature is below 8'b00111100, the WeatherInator should generate hot and

sunny weather on the next 2 cycles followed by hot and rainy weather for 2 cycles.
• If it has been more than 4 cycles since receiving a forecast, the WeatherInator should do nothing

and the get_weather method should return Invalid.

You may assume the WeatherInator does not receive more than one forecast every 4 cycles. We have
provided a counter register which is set to 4 when a new valid forecast is received – use this to
count down to the next state transition. Make sure you do not allow the counter to drop below
zero.

Fill in the Minispec code for the WeatherInator module below so that it conforms to the specifications
described above. You may use all Minispec operators, including +, -, *, /, and %.

6.191 Fall 2023 - 3 of 20 - Quiz #2

module WeatherInator;

 // WeatherForecast Received by the WeatherInator
 input Maybe#(WeatherForecast) in_forecast default = Invalid;
 Reg#(Climate) climate(Hot);
 Reg#(Precipitation) precipitation(Sun);
 Reg#(Bit#(3)) counter(0);

 rule tick;
 if(isValid(in_forecast)) begin
 let forecasted_temp = _________________________________;

 if (___________________________ >= 8'b00111100) begin
 climate <= ___________________________;
 precipitation <= ___________________________;
 end else begin
 climate <= ___________________________;
 precipitation <= ___________________________;
 end
 counter <= 4;
 end else begin
 if (counter == ____________________) begin
 precipitation <= ___________________________;
 end
 counter <= _______________________________;
 end
 endrule

 method Maybe#(WeatherCondition) get_weather;
 return (counter > ____________________)?

Valid(WeatherCondition{c: climate, p: precipitation})
: Invalid;

 endmethod
endmodule

6.191 Fall 2023 - 4 of 20 - Quiz #2

(B) (8 points) To ensure that your module behaves as expected, fill in the timing chart below with the
register values and outputs for the first 9 cycles of the WeatherInator module. If the value is not
known, write a “?” in the slot.

Cycle		 0		 1		 2		 3		 4		 5		 6		 7		 8		

isValid(in_forecast)	 True	 False	 False	 False	 True	 False	 False	 False	 False	
fromMaybe(?,in_forecast).
temperature	 8'b00111100	 Invalid	 Invalid	 Invalid	 8'b0	 Invalid	 Invalid	 Invalid	 Invalid	

climate	 	 	 	 	 	 	 	 	 	

precipitation

isValid(get_weather)	 False 	 	 	 	 	 	 	 	

counter 	 	 	 	 	 	 	 	

6.191 Fall 2023 - 5 of 20 - Quiz #2

Problem 2. Arithmetic Pipelines (18 points)

Your friendly neighborhood squid comes to you with a module named
“FISH.” This module has one input, S, and three outputs, A, B, and C.
The squid tells you that this circuit functions, but its throughput is too
low for it to feed his family. You decide to help, and try to pipeline the
circuit.
For each of the questions below, please create a valid K-stage pipeline of the given circuit. Each
component in the circuit is annotated with its propagation delay in nanoseconds. Show your pipelining
contours and place large black circles (●) on the signal arrows to indicate the placement of pipeline
registers. Give the latency and throughput of each design, assuming ideal registers (tPD=0, tSETUP=0).
Remember that our convention is to place a pipeline register on each output. Note that invalid pipeline
diagrams will receive 0 points.

(A) (1 point) Based on the circuit shown in part (B), what is the propagation delay of the whole FISH

circuit as-is, without pipelining?

tPD (ns): __________

(B) (6 points) Show the maximum-throughput 3-stage pipeline using a minimal number of registers.

What are the latency and throughput of the resulting circuit? In case you need them, extra copies of
the circuit are available on the last page of the exam.

Latency (ns): __________

Throughput (ns-1): __________

6.191 Fall 2023 - 6 of 20 - Quiz #2

(C) (6 points) Show the maximum-throughput pipeline using a minimal number of registers. What are
the latency and throughput of the resulting circuit? In case you need them, extra copies of the circuit
are available on the last page of the exam.

Latency (ns): __________

Throughput (ns-1): __________

(D) (5 points) The squid is overjoyed at the improvements to the FISH module. Now, he presents to you

two new modules: module “FRY” takes in input M and produces output N, and module “BOIL” takes
in inputs P and Q and produces output R. Both modules are implemented with 2-stage pipelines, with
registers denoted by the large black circles (●).

Implementation of Module FRY

Implementation of Module BOIL

i. Given the implementations shown above, what are the throughputs of the modules?

Throughput of FRY (ns-1): __________

Throughput of BOIL (ns-1): __________

6.191 Fall 2023 - 7 of 20 - Quiz #2

The squid explains to you that he wants the “FRY” and “BOIL” modules to process the outputs of the
module “FISH.” That is, connect the output A of Module “FISH” to the input M, and connect the
outputs B and C to the inputs P and Q, as shown below.

ii. When connecting module FISH to module FRY and module BOIL, you have two options
for module FISH: your 3-stage pipeline or your maximum-throughput pipeline. The squid
asks you to maximize throughput, and then minimize latency and number of registers
used. Which implementation of module FISH would you use? What would the latency
and throughput of the combined device be?

Module FISH implementation (circle one):

3-stage pipeline Maximum-throughput pipeline

Latency (ns): __________

Throughput (ns-1): __________

6.191 Fall 2023 - 8 of 20 - Quiz #2

Problem 3. Processor Implementation (16 points)

Queen Frog’s domain has quintupled in size since the last census, and she has asked the Head of the
Census, Matthew, to begin automating their work. As an alumnus of 6.191 and RISC-V enthusiast,
Matthew has written a program in RISC-V assembly. He analyzes his code and realizes that his program
repeats a sequence of multiple instructions that perform a conditional load word.

More specifically, his code contains instructions that repeatedly perform the following logic, which loads
the contents located at memory address reg[rs2] into register rd if the value in register rs1 isn’t 0.

if (reg[rs1] != 0) begin
 reg[rd] <= Mem[reg[rs2]]
end

Matthew wants his code to run efficiently, so he decides to change the processor implementation in order
to execute the above code in one cycle. He wants to add the following conditional load word instruction
to the RISC-V ISA:

clw rd, rs1, rs2

Matthew has chosen to encode the clw instruction in the following way:

31...25 24...20 19...15 14...12 11...7 6...0
0000000 rs2 rs1 110 rd 0000011

(A) (1 point) Encode the following instruction as a 32-bit binary word (provide your answer in

hexadecimal notation):

clw x4, x3, x1

Encoding in hexadecimal 0x: __________________________

Now, help Matthew modify the following processor implementation (shown on the next page) to support
the new conditional load word instruction.

(B) (2 points) For each of the following signals, determine whether the mux being controlled by that

signal needs an extra input to accommodate the new instruction. If so, indicate the name or value of
the signal that needs to be added as an input to the mux. If not, indicate which existing value of
the mux control signal (i.e., 0, 1, 2) is required to make the instruction work properly.

BSEL: Needs new input? YES NO

New input/Existing control signal: ___________

WDSEL: Needs new input? YES NO

New input/Existing control signal: ___________

6.191 Fall 2023 - 9 of 20 - Quiz #2

The WERFSEL mux was added to the datapath to support the addition of the clw instruction. The
decoder will set WERFSEL = 2 for the clw instruction.

(C) (2 points) What should input 2 of the WERFSEL mux be connected to (i.e., what signal should ‘?’ be

replaced with?) to support the clw instruction?

WERFSEL input 2 signal:_________________

(D) (3 points) You want to ensure that when adding support for the new clw instruction, that the
processor implementation continues to properly support all existing instructions. To do this, in
addition the WERFSEL mux, is there a need for a second additional mux to be added to the datapath
to support the clw instruction? If so, draw the mux below and clearly label the inputs and outputs of
the mux. In addition, state where in the datapath this mux should be added. If you believe that no
additional mux is needed then provide an explanation for your conclusion. If you decide that you do
need an additional mux, then you may use the new mux output as a control signal for the following
questions.

6.191 Fall 2023 - 10 of 20 - Quiz #2

(E) (4 points) Now let’s take a closer look at the Data Memory module. For each of the following input
signals of the Data Memory module, decide what the value of the signal should be when executing
the clw instruction. If the value of the signal doesn’t matter, then put N/A. The possible values of the
MemFunc signal are provided below.

MemFunc: Lw, Lh, Lhu, Lb, Lbu, Sw, Sh, Sb

MemEnable: __________________

WD (write data): __________________

Adr (address): __________________

MemFunc: __________________

(F) (2 points) Finally, decide for each of the following control signals what their values should be when

executing the clw instruction. If the value of the signal doesn’t matter, then put N/A. The possible
values of each signal are provided below.

AluFunc: Add, Sub, And, Or, Xor, Slt, Sltu, Sll, Srl, Sra

BrFunc: Eq, Neq, Lt, Ltu, Ge, Geu

AluFunc: __________________

BrFunc: __________________

(G) (2 points) If instead, Matthew’s program had to repeatedly perform a conditional store word, could

we have modified our processor control signals to support this instruction? Explain your answer.
The code implementation of the conditional store word instruction is provided below:

if (reg[rs1] != 0) begin
 Mem[reg[rd]] <= reg[rs2]
end

 Could we implement a conditional store word? YES NO

Explanation: ___

6.191 Fall 2023 - 11 of 20 - Quiz #2

Problem 4. Caches (20 points)

Assume that addresses and data words are 32 bits. Consider a direct mapped cache with 32 data words
with 1 word/cache line.

(A) (2 points) Which address bits should the cache use for the cache index, tag field, and block offset.

Write [X : X] if no bits are used.
Address bits for byte offset: A[1 : 0]

Address bits for cache index: A[:]

Address bits for tag field: A[:]

Address bits for block offset: A[:]

Now consider a 2-way set associative cache with 8 sets and a block size of 2. You will use this
architecture for parts (B) – (E).

(B) (2 points) How will the following cache parameters change in the new 2-way cache relative to the

direct mapped cache in part (A)? Please circle the best answer.

of cache index bits: UNCHANGED … +1 … -1 … +2 … -2 … CAN’T TELL

of tag field bits: UNCHANGED … +1 … -1 … +2 … -2 … CAN’T TELL

of block offset bits: UNCHANGED … +1 … -1 … +2 … -2 … CAN’T TELL

(C) (10 points) Now analyze the performance of this cache (2-way set associative, 8 sets, block size of 2

words) using the following assembly program, which iterates through array A (base address 0x130)
and array B (base address 0x200) and stores the result of A[i]–B[i] back into A[i].

// Assume the following registers are initialized:
// x1 = 0 (loop index i)
// x2 = 4 (number of elements in arrays A and B)
. = 0x0 // The following code starts at address 0x0
loop:
 slli x3, x1, 2 // convert to byte offset
 lw x4, 0x130(x3) // load value from A[i]
 lw x5, 0x200(x3) // load value from B[i]
 sub x4, x4, x5 // x4 = A[i]–B[i]
 sw x4, 0x130(x3) // store A[i]–B[i] into A[i]
 addi x1, x1, 1 // increment index
 blt x1, x2, loop // loop 4 times

 unimp // halt, all done

6.191 Fall 2023 - 12 of 20 - Quiz #2

Assume the cache is empty before execution of this code (i.e., all valid bits are 0). Assume that the cache
uses a least-recently used (LRU) replacement policy, and that all cache lines in Way 0 are currently the
least-recently used. Fill in, or update, all the known values of the LRU bit, the dirty bit (D), the valid bit
(V), the tag, and the data words after one loop iteration (after executing the blt instruction for the first
time). For word fields, fill them in with the opcode if they are instructions (e.g., blt) or fill them in with
the array element if they are data (e.g., B[0]). You may assume that if V = 0 then D = 0.

loop: // The following code starts at address 0x0
 slli x3, x1, 2 // convert to byte offset
 lw x4, 0x130(x3) // load value from A[i]
 lw x5, 0x200(x3) // load value from B[i]
 sub x4, x4, x5 // x4 = A[i]–B[i]
 sw x4, 0x130(x3) // store A[i]–B[i] into A[i]
 addi x1, x1, 1 // increment index
 blt x1, x2, loop // loop 4 times

 unimp // halt, all done

Way 0 (After one loop iteration)

Index V D Tag Word 1 Word 0

0

1

2

3

4

5

6

7

Way 1 (After one loop iteration)

Index V D Tag Word 1 Word 0

0

1

2

3

4

5

6

7

Index LRU after one
loop iteration

0
1
2
3
4
5
6
7

6.191 Fall 2023 - 13 of 20 - Quiz #2

(D) (5 points) Fill out the table below with the number of instruction hits, instruction misses, data hits,
and data misses for each of the four iterations of the loop.

 Instructions Data

 Hits Misses Hits Misses

First loop
iteration

Second loop
iteration

Third loop
iteration

Fourth loop
iteration

(E) (1 point) What is the hit ratio for the execution of the four loop iterations (Note: do not include

execution of the unimp instruction)? You may leave your answer as a fraction.

Hit Ratio: _______________

6.191 Fall 2023 - 14 of 20 - Quiz #2

Problem 5. Pipelined Processors (16 points)

Ben Bitdiddle was adding two vectors in RISC-V assembly. He wrote the following code.

 mv x3, x4
loop: lw x6, 0(x4) // get vector 1 element
 lw x7, 0x300(x4) // get vector 2 element
 add x7, x7, x6 // add the two element values
 sw x7, 0(x4) // store result back into vector 1
 addi x4, x4, 4 // increment vector offset
 blt x4, x8, loop // repeat loop for each element
 mv x10, x3
 addi sp, sp, 8 // sp is same as x2
 ret

Ben runs this code on a standard 5-stage RISC-V processor with full bypassing and branch annulment.
Assume that branches are always predicted not taken (i.e., we speculate that the branch is not taken) and
that branch decisions are made in the EXE stage. Assume that the loop repeats many times and it’s
currently in the middle of its execution.

In case you need them, extra pipeline diagrams are available at the end of the quiz.

(A) (7 points) Fill in the pipeline diagram for cycles 100-110 assuming that at cycle 100	the lw x6,

0(x4) instruction is fetched. Draw arrows indicating each use of bypassing. Ignore any cells
shaded in gray.

 100 101 102 103 104 105 106 107 108 109 110

IF lw

DEC

EXE

MEM

WB

How many cycles does each iteration of the loop take? For each loop iteration, how many cycles are
wasted due to stalls? How many cycles are wasted due to annulments?

Number of cycles per loop iteration: _________________

Number of cycles per loop iteration wasted due to stalls: ________________

Number of cycles per loop iteration wasted due to annulments: _______________

6.191 Fall 2023 - 15 of 20 - Quiz #2

Ben Bitdiddle is looking to improve the performance of his processor. Ben notices that his vectors are
very long and hence the branch will be taken almost always. So, he adds a branch predictor to his
processor which detects the location at which the loop starts the first few times the loop runs. After that,
in steady state, it always predicts the branch as taken to the start of the loop. In the EXE stage, it is
determined whether the decision was correct or not and if it is incorrect, all instructions fetched from the
start of the loop are flushed from the pipeline and the processor starts fetching from the instruction after
the branch instruction.

(B) (4 points) Considering this optimization, fill in the pipeline diagram for cycles 200-204, assuming that
at cycle 200 the blt x4, x8, loop instruction is fetched. Draw arrows indicating each use of
bypassing. Ignore any cells shaded in gray.	

 200 201 202 203 204

IF blt

DEC

EXE

MEM

WB

	
How many cycles are saved per loop iteration due to this better branch prediction?

Number of cycles saved per loop iteration in steady state: ______________

Ben recalls that there are multiple ways to improve the overall speed of a computation. He explored
optimizing the number of cycles in part B, but now he decides to make each cycle faster. He read in a
6.191 lecture that too much bypassing can be counterproductive as it can increase the propagation delay
of the circuit. So, Ben takes his processor from Part A (without branch prediction), and removes the
bypass from WB to DEC.

(C) (2 points) What is the number of cycles per loop iteration after the bypass from WB to DEC is
removed?

Number of cycles per loop iteration:__________________

(D) (3 points) Ben synthesizes his circuit and notices that removing bypassing reduced his critical path

from 100ns to 90ns. Is it beneficial for the performance of this program to remove bypassing?

YES NO Justification:___

6.191 Fall 2023 - 16 of 20 - Quiz #2

Problem 6. Pipelined Processor Performance (16 points)

Ben Bitdiddle has recently gotten into an unhealthy obsession with the Fibonacci sequence. He writes the
following loop in RISC-V assembly that calculates the first 1000 Fibonacci numbers (he doesn’t have the
patience for more than 1000 numbers) and stores them in memory.

 addi t0, zero, 1000 // t0 = 1000
 addi a1, zero, 1 // fib(1) = 1
 sw a1, 0(t1) // base memory address stored in t1
 addi a2, zero, 1 // fib(2) = 1
 addi t1, t1, 4
 sw a2, 0(t1)

fib: add a3, a2, a1 // fib(n) = fib(n-1) + fib(n-2)
 addi t1, t1, 4
 sw a3, 0(t1)
 mv a1, a2 // update fib(n-2) to fib(n-1)
 mv a2, a3 // update fib(n-1) to fib(n)
 addi t0, t0, -1
 bnez t0, fib

 xor t2, t3, t4
 not t5, t3
 and t6, t3, t4

Ben doesn’t want to spend money on a pipelined processor and thinks that a single-cycle RISC-V processor
that he found on the black market can get the job done. Alice disagrees and wants to convince Ben to invest
in a pipelined processor. Help Alice come up with a convincing argument on why Ben should purchase a
pipelined processor.

(A) (1 point) Ben’s single-cycle processor has the following propagation delays for each piece of

combinational logic.

What is the minimum clock period of this processor for the Fibonacci program to execute correctly? How
long does the single-cycle processor take to execute 1 iteration of the loop?

Processor minimum clock period: _________________

Time to execute 1 iteration of the loop: _________________

IF 3 ns
DEC 4 ns
EXE 6 ns
MEM 5 ns
WB 3 ns

6.191 Fall 2023 - 17 of 20 - Quiz #2

(B) (8 points) Alice wants to ease Ben into the world of pipelines, so she designs a simple 3-stage pipelined
processor. The three stages are 1) fetch and decode, 2) execute, and 3) memory access and write back.
Her pipeline has no bypassing, branches are always predicted as not taken with branch annulment
available, and branch decisions are available in the EXE. Each component has the same propagation
delays as Ben’s single-cycle processor (included here for your convenience).

Fill in the pipeline diagram for cycles 100-113, assuming that at cycle 100 the add a3, a2, a1
instruction is fetched and registers a2 and a1 are up to date.

fib: add a3, a2, a1 // fib(n) = fib(n-1) + fib(n-2)
 addi t1, t1, 4
 sw a3, 0(t1)
 mv a1, a2 // update fib(n-2) to fib(n-1)
 mv a2, a3 // update fib(n-1) to fib(n)
 addi t0, t0, -1
 bnez t0, fib
 xor t2, t3, t4
 not t5, t3
 and t6, t3, t4

Cycle 100 101 102 103 104 105 106 107 108 109 110 111 112 113

IF
DEC

add

EXE

MEM
WB

How many cycles does each iteration of the loop take? For each loop iteration, how many cycles are wasted
due to stalls? How many are wasted due to annulments?

Number of cycles per loop iteration: _________________

Number of cycles per loop iteration wasted due to stalls: _________________

Number of cycles per loop iteration wasted due to annulments: _________________

What is the minimum clock period for this processor? How long does 1 iteration of the loop take?

Processor minimum clock period: _________________

Time to execute 1 iteration of the loop: _________________

IF 3 ns
DEC 4 ns
EXE 6 ns
MEM 5 ns
WB 3 ns

6.191 Fall 2023 - 18 of 20 - Quiz #2

(C) (7 points) Ben still doesn’t seem convinced, so Alice decides to add bypass and branch prediction to
her pipeline. Her pipeline has full bypassing to IFDEC (i.e., EXE->IFDEC and MEMWB->IFDEC),
branches are predicted as taken with branch annulment available, and branch decisions are available
in the EXE stage. She adds bypass and prediction logic with the following propagation delays:

Fill in the pipeline diagram for cycles 100-109, assuming that at cycle 100 the add a3, a2, a1
instruction is fetched and registers a2 and a1 are up to date. Indicate all bypass paths with vertical
arrows.

fib: add a3, a2, a1 // fib(n) = fib(n-1) + fib(n-2)
 addi t1, t1, 4
 sw a3, 0(t1)
 mv a1, a2 // update fib(n-2) to fib(n-1)
 mv a2, a3 // update fib(n-1) to fib(n)
 addi t0, t0, -1
 bnez t0, fib
 xor t2, t3, t4
 not t5, t3
 and t6, t3, t4

Cycle 100 101 102 103 104 105 106 107 108 109

IF
DEC

add

EXE

MEM
WB

How many cycles does each iteration of the loop take?

Number of cycles per loop iteration: _________________

Assuming the delays provided for the bypass and branch prediction components, what is the minimum
clock period for this processor? How long does 1 iteration of the loop take?

Processor minimum clock period: _________________

Time to execute 1 iteration of the loop: _________________

IF 3 ns
DEC 4 ns
EXE 6 ns
MEM 5 ns
WB 3 ns
PRD 1 ns
BYP 1 ns

6.191 Fall 2023 - 19 of 20 - Quiz #2

Extra diagrams for problem 2:

6.191 Fall 2023 - 20 of 20 - Quiz #2

Extra diagrams for problem 5:

 100 101 102 103 104 105 106 107 108 109 110

IF lw

DEC

EXE

MEM

WB

 200 201 202 203 204

IF blt

DEC

EXE

MEM

WB

Extra diagrams for problem 6:

Cycle 100 101 102 103 104 105 106 107 108 109 110 111 112 113

IF
DEC

add

EXE

MEM
WB

Cycle 100 101 102 103 104 105 106 107 108 109

IF
DEC

add

EXE

MEM
WB

END OF QUIZ 2!

