

6.191 Fall 2022 - 1 of 22 - Updated Quiz #2 Solutions

M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.191 Computation Structures

Updated Fall 2022

Quiz #2

Name

Solutions
Athena login name

Score

Recitation section
o WF 10, 34-301 (Grace) o WF 2, 13-5101 (Frances) o WF 12, 36-155 (Shiqi)
o WF 11, 34-301 (Grace) o WF 3, 13-5101 (Frances) o WF 1, 36-155 (Shiqi)
o WF 12, 35-310 (Alexandra) o WF 10, 13-4101 (Georgia) o WF 1, 34-303 (Amelia)
o WF 1, 35-308 (Alexandra) o WF 11, 13-4101 (Georgia) o WF 2, 34-303 (Amelia)
 o opt-out

Please enter your name, Athena login name, and recitation section above. Enter your answers
in the spaces provided below. Show your work for potential partial credit. You can use the extra
white space and the backs of the pages for scratch work.

Problem 1. Sequential Circuits in Minispec (20 points)

You are frustrated with the 77 Mass. Ave crosswalk and decide to design a better traffic signal in
Minispec. To start, you want to make sure the traffic light will function well in the daytime when
there’s lots of traffic. After carefully analyzing traffic patterns, you define the following
specification:

• The traffic light should be red for 4 cycles, then green for 10 cycles, then yellow for 1
cycle, and repeat this pattern indefinitely.

• The light starts red (and should stay red for 4 cycles before turning green).
• Pedestrians can only cross when the light is red.

(A) (6 points) Fill in the Minispec module on the next page to track the traffic light state as a

sequential circuit.
• The pedestriansCanCross method should return True if and only if the light is in

a state where pedestrians are allowed to cross.
• The currentLight method should return the current state of the traffic light.
• We have provided a counter register – use this to count down to the next state

transition.

1 /20
2 /17
3 /16

6.191 Fall 2022 - 2 of 22 - Updated Quiz #2 Solutions

typedef enum { Green, Yellow, Red } LightState;

module TrafficLight;

Reg#(LightState) light(___Red___);

Reg#(Bit#(____4_____)) counter(_____3______);

method Bool pedestriansCanCross = _light == Red__;

method LightState currentLight = __light_________;

rule tick;

if (light == Green) begin

if (counter == 0) begin

light <= __Yellow_____;

end else begin

counter <= __counter - 1__;

end

end else if (light == Yellow) begin

light <= ___Red________;

counter <= ______3______;

end else if (light == Red) begin

if (counter == 0) begin

light <= ___Green____;

counter <= ____9_______;

end else begin

counter <= __counter - 1__;

end

end

endrule

endmodule

6.191 Fall 2022 - 3 of 22 - Updated Quiz #2 Solutions

(B) (6 points) To ensure that your module behaves as expected, fill in the timing chart below with
the register values and outputs for the first 6 cycles.

Cycle 0 1 2 3 4 5

counter 3 2 1 0 9 8

light Red Red Red Red Green Green

currentLight Red Red Red Red Green Green

pedestriansCanCross True True True True False False

(C) (8 points) Now you want to add a new feature to your traffic light. During the daytime, you

want it to work as in part (A). But during the nighttime, the traffic light should work
differently:

• By default, the light should be green.
• When a pedestrian requests to cross the street and the light is green, it should remain

green for 3 more cycles, turn yellow for 1 cycle, then red for 4 cycles. Then it should
go back to being green indefinitely.

• If a pedestrian requests to cross the street when the light is yellow or red, this request
should be ignored and have no effect.

• If a pedestrian requests to cross the street while the light is green, and a pedestrian
requests to cross the street in a following cycle when the light is still green, this
request should also have no effect.

You also want to add a feature for emergency pedestrian requests. In an emergency, if a
pedestrian requests to cross, the light should immediately turn yellow on the next cycle.
The pedestrian request is provided as a Maybe#(PedestrianRequest) type – on each
cycle it will either be:

• Invalid (no pedestrian request)
• Standard (a standard pedestrian request was made)
• Emergency (an emergency pedestrian request was made)

Note that your implementation should still work when the input transitions from daytime to
nighttime, even though in daytime the Green light is 10 cycles and in nighttime it is only 3
cycles following a pedestrian request. Thus, if it is nighttime and our counter variable is too
large (because we were counting down from a larger value during the daytime), we should
“clamp” it to be no larger than it can be in nighttime. We have provided a currentCounter
variable to use for this purpose – i.e. it will be clamped to the maximum value the counter can
be during nighttime.

Fill in the Minispec module below to add this functionality. We have provided two inputs –
one for whether it is currently nighttime or daytime, and one for whether a pedestrian has
requested to cross the street in this cycle.

6.191 Fall 2022 - 4 of 22 - Updated Quiz #2 Solutions

typedef enum { Green, Yellow, Red } LightState;

typedef enum { Daytime, Nighttime } TimeOfDay;

typedef enum { Standard, Emergency } PedestrianRequest;

module TrafficLight;

Reg#(LightState) light(_<answer from Part A>_);

Reg#(Bit#(_<answer from Part A>_)) counter(_<answer from part A>_);

input TimeOfDay timeOfDay default = Nighttime;

input Maybe#(PedestrianRequest) pedestrianRequest default = Invalid;

method Bool pedestriansCanCross = <answer from part A>;

method LightState currentLight = <answer from part A>;

The code continues on the next page.

6.191 Fall 2022 - 5 of 22 - Updated Quiz #2 Solutions

rule tick;
if (timeOfDay == Daytime) begin

<Your answer from Part A>

end else begin
if (light == Green) begin

 Bit#(<answer from part A>) currentCounter;

// Clamp currentCounter to the maximum value counter
// can be for a Green light at night

 currentCounter = counter > ___3_ ? ___3_ : counter;

if (currentCounter == 0) begin

light <= ___Yellow___;

// Check if received pedestrian request this cycle

end else if (_____isValid(pedestrianRequest)_____)

begin

// Handle emergency request

if (fromMaybe(?, pedestrianRequest) ==

Emergency) begin

 light <= ____Yellow_________________;

end else begin

counter <= ___currentCounter - 1____;

 end

 end else if (currentCounter < ______3________) begin

counter <= ___currentCounter - 1______;

 end else begin

 counter <= ___currentCounter_(or 3)____;

end

end else if (light == Yellow) begin
<Your answer from Part A>

end else if (light == Red) begin
<Your answer from Part A>

end
end

endrule
endmodule

6.191 Fall 2022 - 6 of 22 - Updated Quiz #2 Solutions

Problem 2. Arithmetic Pipelines (17 points)

You are given a module, named “F.” This module has
two inputs, X and Y, and two outputs, A and B. You are
told that the circuit functions, but its throughput is too
low. You decide to take a look and try to pipeline the
circuit.

For each of the questions below, please create a valid K-stage pipeline of the given circuit. Each
component in the circuit is annotated with its propagation delay in nanoseconds. Show your
pipelining contours and place large black circles (●) on the signal arrows to indicate the
placement of pipeline registers. Give the latency and throughput of each design, assuming ideal
registers (tPD=0, tSETUP=0). Remember that our convention is to place a pipeline register on each
output.

(A) (1 point) What is the propagation delay of the whole circuit shown below as-is without

pipelining?

tPD (ns): ____26____

(B) (4 points) Show the maximum-throughput 3-stage pipeline using a minimal number of

registers. What are the latency and throughput of the resulting circuit? Pay close attention to
the direction of each arrow. In case you need them, extra copies of the circuit are available
on the last page of the exam.

Latency (ns): ____33____

Throughput (ns-1): ___1/11____

6.191 Fall 2022 - 7 of 22 - Updated Quiz #2 Solutions

 (C) (4 points) Show the maximum-throughput pipeline using a minimal number of registers.
What are the latency and throughput of the resulting circuit? In case you need them, extra
copies of the circuit are available on the last page of the exam.

Latency (ns): ____32____

Throughput (ns-1): ___1/8____

(D) Now, you are given two new modules: module “G” takes in input U and produces output V,

and module “H” takes in input S and produces output T. You are given module “G”
implemented with a 2-stage pipeline, with registers denoted by the large black circles (●), and
module “H” implemented with a single stage pipeline as shown below.

Implementation of Module G

Implementation of Module H

6.191 Fall 2022 - 8 of 22 - Updated Quiz #2 Solutions

(i) (2 points) Given the implementation of the modules above, what are the throughputs of
the modules?

Throughput of G(ns-1): ____1/15___

Throughput of H(ns-1): ____1/8____

You want to connect these two modules with the module “F”, from the previous parts of this
problem, so the output A of Module “F” is connected to the input U and output B is
connected to the input S as shown below.

(ii) (2 points) Do any changes need to be made to modules G or H to ensure that the

combined circuit above behaves as a proper pipeline? If so, draw any updated modules
below. If no changes are required, say “No changes required”.

Add a pipeline stage to H so that both G and H have 2 pipeline stages. (Preferred)

 OR
Remove the first pipeline stage on G (between 6 and 3/7)

(iii) (4 points) When connecting module F to module G and module H, you have two options

for module F: your 3-stage pipeline, or your maximum-throughput pipeline. If you want
to maximize throughput, while minimizing latency and the number of registers used,
which implementation of module F would you use? What would the latency and
throughput of the combined device be? Assume that any required changes to modules G
or H have been made.

Module F implementation (circle one): 3-stage pipeline Maximum-throughput pipeline

 5 Stages at 15ns/stage (if gave 1st answer to dii) or 4 Stages at 26ns/stage (if gave 2nd answer

to dii) Latency (ns): __75 or 104___

Throughput (ns-1): __1/15 or 1/26___

6.191 Fall 2022 - 9 of 22 - Updated Quiz #2 Solutions

Problem 3. A RISCier processor (16 points)

Consider the single-cycle processor implementation we saw in lecture:

The timing characteristics of all components are listed below:

Component Propagation delay (tPD)
Register 1ns
Decoder 2ns

RegFile read 3ns
MUX 1ns
ALU 4ns

Adder 3ns
Memory read

(instruction or data)
4ns

Assume that any components not listed have a delay of 0 ns.

(A) (3 points) What is the minimum clock cycle time of this processor? (For partial credit, draw

the critical path in the diagram above.)
Critical path is PC -> IMem -> Decoder -> RF(read) -> BSEL mux -> ALU -> DMem (read)
-> WDSEL mux -> RF(write) => tCLK >= 1 + 4 + 2 + 3 + 1 + 4 + 4 + 1 + 2 (RF setup)

Minimum tCLK: ____22____ ns

Setup/hold times for clocked inputs
(registers and writes to

RegFile and data memory)

Setup time (tSETUP) 2 ns
Hold time (tHOLD) 0 ns

+4

Register
File

RA1 RA2

RD1 RD2
WA WD

WE

AluFunc

32

32

ALU
A B

Inst[31:0]

WERF

Instruction
Memory

A

D

PC 00

Data Memory
RD

WD R/W

Adr

MWR

WDSEL0 1 2
32

AluFunc

BSEL

WERF

WDSEL

MWR

32

ALU BrBrFunc branch

+
32

brTarget

PCSEL 0123

branch

PCSEL

32
PC+4

JT

JT[31:1],1’b0

rd

rs2rs1

imm

Decoder

Opcode
Funct3
Funct7 32

BSEL01

imm
32

BrFunc

6.191 Fall 2022 - 10 of 22 - Updated Quiz #2 Solutions

Ben Bitdiddle is unhappy with the performance of this processor. After a Ouija session with
legendary CPU designer Seymour Cray, Ben implements this alternative datapath (the control
logic stays the same), where the data memory’s Adr input comes from a different place:

(B) (3 points) What is the minimum clock cycle time of Ben’s new processor? (For partial credit,

draw the critical path in the diagram above.)
Critical path is PC -> IMem -> Decoder -> RF(read) -> BSEL mux -> ALU -> WDSEL mux
-> RF(write) => tCLK >= 1 + 4 + 2 + 3 + 1 + 4 + 1 + 2 (RF setup)

Minimum tCLK: ____18____ ns

(C) (2 points) Ben’s processor executes some instructions incorrectly according to the RISC-V

ISA. Give an example of one such instruction, and write the equivalent RISC-V instruction
that is actually executed by the processor.

Example of incorrect instruction: ____lw a0, 8(a1)__________

(any lw or sw instruction with a non-zero offset)

RISC-V instruction that produces the same behavior: ________________________
as executing the above incorrect instruction: _____lw a0, 0(a1)_________

(the same lw or sw instruction with the offset set to 0)

+4

Register
File

RA1 RA2

RD1 RD2
WA WD

WE

AluFunc

32

32

ALU
A B

Inst[31:0]

WERF

Instruction
Memory

A

D

PC 00

Data Memory
RD

WD R/W

Adr

MWR

WDSEL0 1 2
32

AluFunc

BSEL

WERF

WDSEL

MWR

32

ALU BrBrFunc branch

+
32

brTarget

PCSEL 0123

branch

PCSEL

32
PC+4

JT

JT[31:1],1’b0

rd

rs2rs1

imm

Decoder

Opcode
Funct3
Funct7 32

BSEL01

imm
32

BrFunc

6.191 Fall 2022 - 11 of 22 - Updated Quiz #2 Solutions

(D) (5 points) The program below takes 90 instructions to execute in the original processor.
However, it produces incorrect results in Ben’s new processor. Modify the program so that it
runs correctly on the new processor. For full credit, the number of executed instructions
should not increase compared to the original code. How many instructions does your
assembly code execute?

C code

int x[16];
for (int i = 0; i < 15; i++)
 x[i+1] = x[i] + x[i+1];

Assembly code

Initial values:
a0: address of x[0]
a7: address of x[15]
loop: lw a1, 0(a0)
 lw a2, 4(a0)
 add a3, a2, a1
 sw a3, 4(a0)
 addi a0, a0, 4
 blt a0, a7, loop

Modified assembly that executes
correctly on new processor:

Initial values:
a0: address of x[0]
a7: address of x[15]

lw a1, 0(a0)
 addi a0, a0, 4
loop: lw a2, 0(a0)
 add a1, a1, a2
 sw a1, 0(a0)
 addi a0, a0, 4
 ble a0, a7, loop

Number of executed instructions of new program: ___15*5 + 2 = 77____
(other solutions are possible; any solution with fewer instructions than the original

one earns full credit, and any correct solution earns at least 2 points of partial credit)

(E) (2 points) What is the execution time of the above program in the original and new

processors? (Use the appropriate variant of the program for each processor.)

Execution time on original processor: ___77*22 =1694____ ns

Execution time on Ben’s new processor: ___77*18=1386____ ns

(or consistent with D)

6.191 Fall 2022 - 12 of 22 - Updated Quiz #2 Solutions

Problem 4. Caches (20 points)

Cache Ketchum wants to design a cache to help keep track of his Pokedex entries. He’s enlisted
your help as a talented 6.191 student! 😀

(A) (3 points) Ketchum wants to build a direct-mapped cache with a block size of eight words.

He also wants the cache to hold a total of 29 = 512 data words. Which address bits should
be used for the block offset, cache index, and tag? Assume that data words and addresses are
32 bits wide.

Address bits used for block offset: A[__4__ : __2__]

Address bits used for cache index: A[__10__ : __5__]

Address bits used for tag: A[__31__ : __11__]

(B) (2 points) Ketchum ponders over the design and decides that he wants to double the number

of cache lines in his direct-mapped cache. However, he wants to keep the total number of
words in the cache the same. How will the number of bits used to represent the block offset
change as a result?

Change in # bits to represent block offset (select one of the choices below):

UNCHANGED … +1 … -1 … 2x … 0.5x … CAN’T TELL

6.191 Fall 2022 - 13 of 22 - Updated Quiz #2 Solutions

Ketchum decides he doesn’t want a direct-mapped cache at all! He wants a two-way set-
associative cache.

The remainder of the problem will be considering this 2-way set-associative cache with a
capacity of 32 words. Below is a snapshot of this cache during the execution of some unknown
code. V is the valid bit and D is the dirty bit of each set. Assume an LRU replacement policy and
that Way 0 is currently holds the LRU cache line for all sets.

 Way 0
V D Tag Word 0 Word 1 Word 2 Word 3
1 0 0x28 0xA65 0x521 0xA2C 0x947
1 1 0x1D 0xB54 0xE95 0x9AA 0xC7A
1 0 0x4D 0xE71 0x2FE 0xC58 0x4C4
1 0 0x085 0xB6B 0xD55 0x27D 0xE1E

 Way 1
V D Tag Word 0 Word 1 Word 2 Word 3
1 1 0x093 0x2EA 0x4CE 0x42D 0x462
1 1 0x093 0x3C2 0x152 0xB9C 0xC23
1 0 0xAF 0xC05 0xE81 0xCEA 0x60B
1 0 0xA5 0x57B 0xC5F 0xA1F 0xAF5

(C) (5 points) Identify whether each of the following memory accesses is a hit or a miss. Consider

each memory access independently. If it is a hit, specify what value is returned; if it is a miss,
write N/A. In addition, if it is a miss, determine if any values need to be written back to main
memory, and if so, to which location(s) in main memory? List all updated main memory
word addresses. If no writes to main memory are needed, write N/A.

Load from address 0x2974
0x2974 = 0010_1001_0111_0100
tag = 0xA5, index = 3, block offset = 1

Circle One: Hit / Miss

Returned value if hit or N/A if miss: __C5F_______

All updated main memory word addresses or N/A: ___N/A_______

Load from address 0x11D8
0x11D8 = 0001_0001_1101_1000
tag = 0x47, index = 1, block offset = 2
miss à replaces way 0 line 1 which is dirty, must first write cache line back to memory
if tag = 0x1D and index = 1, then memory addresses are 111_0101_XX00 = 0x750,
0x754, 0x758, 0x75C.

Circle One: Hit / Miss

Returned value if hit or N/A if miss: ___N/A______

All updated main memory word addresses or N/A: ___0x750, 0x754, 0x758, 0x75C

6.191 Fall 2022 - 14 of 22 - Updated Quiz #2 Solutions

After testing, Ketchum decides to use the cache with the following RISC-V assembly program
that increments every element in an array and stores the changed elements in another array.

// Assume the following registers are initialized:
// x1 = 0xC0 (base address of input array)
// x2 = 0x80 (base address of output array)
// x3 = 4 (number of elements in input and output arrays)

 . = 0x100 // The following code starts at address 0x100
 slli x6, x3, 2
 add x6, x1, x6 // address of end of input array

loop:
 lw x4, 0(x1) // get array element
 addi x4, x4, 1 // increment element
 sw x4, 0(x2) // store element into output array
 addi x1, x1, 4 // compute next address for input array
 addi x2, x2, 4 // compute next address for output array
 blt x1, x6, loop // continue looping

Answer the following questions about the behavior of the cache during execution of the above
code. Note the cache has 2 ways and uses an LRU replacement policy. Assume that the cache is
initially empty.

(D) (1 point) How many instruction fetches and data accesses occur per iteration of the loop?

Number of instruction fetches per loop iteration: _____6_________

Number of data accesses per loop iteration: _____2_________

(E) (1 point) How many instruction fetches and data accesses occur during execution of the

entire program, including the instructions outside of the loop and the four iterations of the
loop?

Total number of instruction fetches: _____26_______

Total number of data accesses: _____8________

6.191 Fall 2022 - 15 of 22 - Updated Quiz #2 Solutions

To help you think through the behavior of the cache on this program, we provide you with a
diagram of the empty cache. You may use if you find it helpful, but you do not need to fill it
out. Extra copies are available at the end of the exam.

Way 0

Way 1

Instructions miss: ¼ for fetching first word in block, so total of 2
Data miss: 0xC0 and 0x80 both map to index 0 so they keep swapping each other out so you miss
every time, so total of 8
So 10 misses out of 34 or 24 hits out of 34.

(F) (4 points) How many instruction fetch misses and data access misses occur during execution

of the entire program?

Number of instruction fetch misses: ______2________

Number of data access misses: ______8________

(G) (1 point) What is the hit ratio for the execution of this program? You may leave your answer

as a fraction.

Hit ratio: ____24/34 = 12/17______

V D Tag Word 0 Word 1 Word 2 Word 3
1 0 0x4 slli add lw addi
1 0 0x4 sw addi addi blt

V D Tag Word 0 Word 1 Word 2 Word 3
1 1 0x3,

0x2
M[0xC0],
M[0x80]

M[0xC4],
M[0x84]

M[0xC8],
M[0x88]

M[0xCC],
M[0x8C]

6.191 Fall 2022 - 16 of 22 - Updated Quiz #2 Solutions

(H) (3 points) Ketchum wants to get the best performance out of his cache. He is considering
modifying his current cache to double the number of cache lines while leaving all other
parameters of the cache the same (2-way set associative and a block size of 4), thus doubling
the total capacity of the cache. However, this new cache is a lot more expensive! Ketchum
wants to choose the cheapest cache that maximizes the hit ratio. Which one should he
choose? Explain your answer.

Circle One: Current Cache New Cache

Why?
Currently, the memory accesses overwrite each other every time since the indices
overlap. If we have three bits to represent the index instead of two, the indices will no
longer conflict, reducing the misses to 2/8.

6.191 Fall 2022 - 17 of 22 - Updated Quiz #2 Solutions

Problem 5. Pipelined Processors (18 points)

Consider the loop below, which sums the values in a linked list. We run this code on a standard 5-
stage RISC-V processor with full bypassing. Assume that branches are always predicted not taken
and that branch decisions are made in the EXE stage. Assume that the loop repeats many times
and it’s currently in the middle of its execution.

In case you need them, extra pipeline diagrams are available at the end of the quiz.

loop: lw a1, 0(a0)
 lw a0, 4(a0)
 add a2, a2, a1
 bnez a0, loop
 mv a0, a2
 addi sp, sp, 8
 ret

(A) (7 points) Fill in the pipeline diagram for cycles 100-109, assuming that at cycle 100 the lw

a1, 0(a0) instruction is fetched. Draw arrows indicating each use of bypassing. Ignore
any cells shaded in gray.

 100 101 102 103 104 105 106 107 108 109

IF lw lw add bnez bnez mv addi lw lw add

DEC lw lw add add bnez mv NOP lw lw

EXE lw lw NOP add bnez NOP NOP lw

MEM lw
lw NOP

add bnez NOP NOP

WB lw lw NOP add bnez NOP

How many cycles does each iteration of the loop take? For each loop iteration, how many
cycles are wasted due to stalls? How many are wasted due to annulments?

Number of cycles per loop iteration: __7_______________

Number of cycles per loop iteration wasted due to stalls: __1_______________

Number of cycles per loop iteration wasted due to annulments: __2_______________

6.191 Fall 2022 - 18 of 22 - Updated Quiz #2 Solutions

Ben Bitdiddle is looking to improve the performance of his processor. He observes that it is
possible to save some cycles with extra bypass paths. Despite its name, full bypassing is not using
as many bypasses as possible: it is bypassing to DEC from all later stages, but it is only bypassing
to DEC. Sometimes, instructions do not need their inputs in the EXE stage, but at a later stage,
and stalling on DEC wastes cycles.

To solve this, Ben proposes a new bypassing scheme called extra bypassing. In extra bypassing:
• There is a bypass path from each stage to DEC and all other stages between DEC and the

source of the bypass. For example, the 5-stage pipeline has paths EXE->DEC, MEM->DEC,
WB->DEC, MEM->EXE, WB->EXE, and WB->MEM. (Note full bypassing has only the
first 3 of these paths.)

• As usual, each bypass path bypasses to the end of the stage (e.g., MEM->DEC bypasses to
the end of DEC, right before the DEC-EXE pipeline register and after register reads, and
MEM->EXE bypasses to the end of EXE, right before the EXE-MEM pipeline register and
after the ALU).

• If an instruction depends on a value produced by an earlier instruction, and the value is still
not available (on either the register file or a bypass path), the instruction does not stall until
the stage before where the value is needed. For example, if a value is needed in EXE and has
not been produced yet, the instruction will stall in DEC (as with full bypassing). But if the
value is needed in MEM, the instruction will proceed from DEC to EXE, and stall in EXE
until the value becomes available through a bypass path.

• Instructions capture missing inputs from bypass paths on the first opportunity they get, even if
they are stalled for other reasons. (This ensures that, if an instruction advances past DEC, it
always gets to bypass the correct input value before it needs it.)

The diagram below shows the bypass paths in full vs. extra bypassing.

Pipeline with full bypassing Pipeline with extra bypassing

(B) (4 points) Give an example 2-instruction sequence that incurs two cycles worth of stalls with

full bypassing, but only one cycle with extra bypassing. Specify which bypass paths are
exercised in each case.

Example 2-instruction sequence:

 lw a1, 0(a0)
 sw a1, 0(a2)

Bypass paths exercised with full bypassing: _WB->DEC_______

Bypass paths exercised with extra bypassing: __WB->EXE_______

IF DEC EXE MEM WB

Instr
Mem

D
ec

od
e RegFile

Data
Mem

Execute

nextPC

‘

PC

RegFile

IF DEC EXE MEM WB

Instr
Mem

D
ec

od
e RegFile

Data
Mem

Execute

nextPC

‘

PC

RegFile

6.191 Fall 2022 - 19 of 22 - Updated Quiz #2 Solutions

To better leverage extra bypassing, Ben implements a new 5-stage pipeline, shown below, where
the ALU is placed in the fourth stage:

• In this pipeline, the first two stages, IF and DEC, work as in the standard 5-stage
pipeline; the third stage, AC, performs address calculation for loads and stores; the fourth
stage, EXM, performs ALU operations and data accesses; and the fifth stage, WB, works
as in the standard pipeline.

• Branches are predicted not-taken
and resolved in the EXM stage.

• The pipeline has extra bypassing.

Consider again the code from part (A):

loop: lw a1, 0(a0)
 lw a0, 4(a0)
 add a2, a2, a1
 bnez a0, loop
 mv a0, a2
 addi sp, sp, 8
 ret

(C) (7 points) Fill in the pipeline diagram for cycles 100-109, assuming that at cycle 100 the lw

a1, 0(a0) instruction is fetched. Draw arrows indicating each use of bypassing. Ignore
any cells shaded in gray. Recall that the Execute module is in the EXM pipeline stage.

 100 101 102 103 104 105 106 107 108 109

IF lw lw add bnez mv addi ret lw lw add

DEC lw lw add bnez mv addi NOP lw lw

EXE lw lw
add bnez

mv NOP NOP lw

MEM lw lw
add

bnez NOP NOP NOP

WB lw lw add bnez NOP NOP

How many cycles does each iteration of the loop take? For each loop iteration, how many
cycles are wasted due to stalls? How many are wasted due to annulments?

Number of cycles per loop iteration: __7_______________

Number of cycles per loop iteration wasted due to stalls: __0_______________

Number of cycles per loop iteration wasted due to annulments: __3_______________

IF DEC AC EXM WB

Instr
Mem

D
ec

od
e RegFile

Data
Mem

Execute

nextPC

PC

RegFile

+

6.191 Fall 2022 - 20 of 22 - Updated Quiz #2 Solutions

Problem 6. Processor Pipeline Performance (16 points)

You are designing a 5- stage pipelined (IF, DEC, EXE, MEM, WB) RISC-V processor with the
same functionality in each stage that we have seen in lecture:

• IF: Initiate instruction fetch
• DEC: Decode instruction and gather source operands (stall if not available)
• EXE: Perform ALU operations and resolve branches
• MEM: Initiate data memory accesses
• WB: Write results back to register file

The processor has the following features:
• The instruction memory responds to every request in one cycle.
• The data memory responds to cache hits in one cycle. The cache miss penalty of the

data memory is 1 additional cycle.
• You have a cache with 4-word cache lines for the data memory.
• The processor predicts that all branches are TAKEN and can start fetching the instruction

at the target address on the cycle immediately following the branch.

This processor will spend most of its time executing the following loop:

loop:
0x100 lw x1, 0(x2)
0x104 lw x3, 0(x1) # address depends on value loaded above
0x108 add x4, x3, x1
0x10c sw x4, 0(x2)
0x110 addi x2, x2, 4
0x114 addi x6, x6, -1 # assume x6 initially is 128
0x118 bne x6, x0, loop

Assume that:

• x2 has an initial value of 0x1000, so on the first iteration, the lw x1, 0(x2)
instruction accesses a memory address with cache block offset 0.

• The memory location accessed by the	lw x3, 0(x1) instruction does not overlap with
the locations accessed by lw x1, 0(x2) and sw x4, 0(x2), and each access maps to
a different cache line.

6.191 Fall 2022 - 21 of 22 - Updated Quiz #2 Solutions

The code is repeated here for your reference:

loop:
0x100 lw x1, 0(x2)
0x104 lw x3, 0(x1) # address depends on value loaded above
0x108 add x4, x3, x1
0x10c sw x4, 0(x2)
0x110 addi x2, x2, 4
0x114 addi x6, x6, -1 # assume x6 initially is 128
0x118 bne x6, x0, loop

(A) (8 points) We are concerned with average performance and the loop runs for many iterations.

Fill out the pipeline diagram below for the 5th iteration of the loop. Note that the processor
predicts the branch to be taken. You may leave boxes blank to indicate NOP operations.
Draw arrows to indicate where a bypass path was used. Then specify the number of
cycles for the 5th iteration of the loop.	

Number of cycles for 5th iteration of the loop: ______13_________

(B) (3 points) How many cycles does the 6th iteration of the loop take? The processor again

predicts the branch to be taken. 	

Number of cycles for 6th iteration of the loop: ______12_________

(C) (3 points) On average, how many cycles does a loop iteration take? 	

(3*12 + 13)/4 = 49/4 = 12.25

Cycles per iteration: ______12.25_________

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

IF lw lw add add add add sw sw sw sw addi addi bne lw lw add

DEC lw lw lw lw lw add add add add sw addi addi bne lw lw

EXE lw lw add sw addi addi bne lw

MEM lw lw add sw addi addi bne

WB lw lw lw lw add sw addi addi

6.191 Fall 2022 - 22 of 22 - Updated Quiz #2 Solutions

(D) (2 points) We now slightly modify the loop to use a multiply instruction. All other
instructions are the same as before. The execute stage of the multiplication takes 4 cycles.
	
loop:
0x100 lw x1, 0(x2)
0x104 lw x3, 0(x1) # address depends on value loaded above
0x108 mul x4, x3, x1
0x10c sw x4, 0(x2)
0x110 addi x2, x2, 4
0x114 addi x6, x6, -1 # assume x6 initially is 128
0x118 bne x6, x0, loop

On average, how many additional cycles does an iteration of this new loop take versus your
answer in part C? 	

Additional cycles per iteration: ______3_________

END OF QUIZ 2!

