
6.191 Spring 2024 - 1 of 15 - Quiz #1

M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.191 Computation Structures
Spring 2024

Quiz #1

Name

Athena login name

Score

Recitation section
o WF 10, 34-302 (Wendy) o WF 2, 34-302 (Catherine) o opt-out
o WF 11, 34-302 (Wendy) o WF 3, 34-302 (Catherine)
o WF 12, 34-302 (Adrianna) o WF 12, 35-308 (Shabnam)
o WF 1, 34-302 (Adrianna) o WF 1, 35-308 (Shabnam)

Please enter your name, Athena login name, and recitation section above. Enter your answers
in the spaces provided below. Show your work for potential partial credit. You can use the extra
white space and the back of each page for scratch work.

1 /19
2 /22
3 /20
4 /17
5 /22

6.191 Spring 2024 - 2 of 15 - Quiz #1

F
A

B
out

Problem 1. Digital Abstraction (19 points)

The F module below outputs 6V when 𝑉! + 0.5 ∗ 𝑉" > 2.5𝑉 for 25ns and outputs 0.5V when
𝑉! + 0.5 ∗ 𝑉" 	< 1.5𝑉 for 25ns. Furthermore, 𝑉! and 𝑉" are both between 0 and 6V. This is
summarized in the equation below:

𝑉#$% = -
						6𝑉, 𝑉! + 0.5 ∗ 𝑉" > 2.5𝑉
			0.5𝑉, 𝑉! + 0.5 ∗ 𝑉" < 1.5𝑉
0 ≤	? ? ?≤ 6𝑉, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

	

(A) (3 points) If we apply constant 𝑉!, 𝑉" for 25ns and then measure a 𝑽𝒐𝒖𝒕 = 𝟏𝑽, what can

we conclude about 𝑉"?

C1: 𝑉" < 3𝑉
C2: 𝑉" ≤ 5𝑉
C3: 𝑉" > 5𝑉
C4: 𝑉" ≥ 3𝑉
C5: None of the above

Best conclusion about 𝑽𝑩 (Circle one): C1 … C2 … C3 … C4 … C5

(B) (3 points) If we apply constant 𝑉!, 𝑉" for 25ns and then measure a 𝑽𝒐𝒖𝒕 = 𝟔𝑽, what can
we conclude about 𝑉!?

C1: 𝑉! < 1.5𝑉
C2: 𝑉! ≤ 2.5𝑉
C3: 𝑉! > 2.5𝑉
C4: 𝑉! ≥ 1.5𝑉
C5: None of the above

Best conclusion about 𝑽𝑨 (Circle one): C1 … C2 … C3 … C4 … C5

(C) (3 points) What Boolean expression does the F module implement? Specify an equation
using 𝐴 and B.

Boolean Expression: out = _________________

(D) (4 points) What are the parameters that produce a maximum noise immunity for the F
module shown above?

𝑽𝑶𝑳 = ______ , 𝑽𝑰𝑳 = ______ , 	𝑽𝑰𝑯 = ______ , 	𝑽𝑶𝑯 = _______

Noise Immunity = ________________

6.191 Spring 2024 - 3 of 15 - Quiz #1

We begin exploring configurations of the F module that will perform as a buffer. We consider
two different buffer proposals:

(E) (4 points) Select the proposal that gives the best noise immunity, and specify parameters that
produce a maximum noise immunity for that proposal.

Best Proposal (circle one): 1 2

𝑽𝑶𝑳 = ______ , 𝑽𝑰𝑳 = ______ , 	𝑽𝑰𝑯 = ______ , 	𝑽𝑶𝑯 = _______

Noise Immunity: ________________

(F) (2 points) Suppose we have a new device G with signaling thresholds defined relative to G’s
supply voltage VDD,G:

• 𝑉/0 = 0.1	V11,3
• 𝑉40 = 0.3	V11,3
• 𝑉45 = 0.8	V11,3
• 𝑉/5 = 0.95	V11,3

We want to connect the original device F to this new G device to make the following circuit:

Under what range of supply voltages VDD,G will the connection between F and G have noise
margins of at least 0.4V?

Range of Supply Voltages: _________V ≤ VDD,G ≤ _________V

F	A	
0	

out	

Proposal	1	

F	A	
A	

out	

Proposal	2	

F	 G	

6.191 Spring 2024 - 4 of 15 - Quiz #1

Problem 2. Boolean Algebra (22 points)

(A) (4 points) The function 𝐹 takes in three Boolean variables, 𝑥, 𝑦, 𝑧 and returns:

𝐹(𝑥, 𝑦, 𝑧) = 𝑥	𝑦	𝑧 + (�̅� + 𝑦	𝑧)KKKKKKKKKKKK + (�̅�	𝑦)KKKKKKK	𝑧

1. What is the minimal sum-of-products expression for 𝐹(𝑥, 𝑦, 𝑧)? Pay close attention to
which variables are included under the underbars.

Minimal sum of products for F = ___

2. Use the minimal sum of products for F to help you fill in the truth table below.

𝒙 𝒚 𝒛 𝑭

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

3. What is the normal form expression for 𝐹(𝑥, 𝑦, 𝑧)?

Normal form for F = ___

(B) (3 points) Draw the circuit that implements F using 3 or fewer gates. You may only use

inverters and 2-input OR, NOR, AND, and NAND gates in your circuit.

6.191 Spring 2024 - 5 of 15 - Quiz #1

(C) (12 points) Find a minimal sum-of-products expression for each of the following Boolean

expressions. Pay close attention to which variables are included under the underbars.

1. (𝑎K𝑐̅)	KKKKKKK(𝑎 + 𝑐̅) + 𝑏 + (𝑏K + 𝑐)̅KKKKKKKKK	

2. 𝑎K𝑐 + 	𝑎𝑏K + (𝑎 + 𝑐)KKKKKKKKKK 	+ 	ab

3. 𝑐(𝑎𝑏 + 𝑎𝑏K) + (𝑎 + 𝑏)KKKKKKKKKK	𝑐

4. ((𝑏 + 𝑏K)KKKKKKKKKK + (𝑎 + 𝑐)(𝑎 + 𝑐̅))	(𝑎K	(𝑎K + 𝑏))

(D) (3 points) Is 𝑮(𝒂, 𝒃) 	= 	𝒂X𝒃 a universal function (i.e., can you build any Boolean function

using only G gates)? If it is universal, then prove it. If it is not, explain why not.

6.191 Spring 2024 - 6 of 15 - Quiz #1

Problem 3. CMOS Logic (20 points)

(A) (8 points) Octavian the octopus is helping his sister clean up her workshop. He has found a

box containing parts meant to be CMOS gates. However, they’re all missing some transistors.

Help Octavian complete each of the following gates by drawing in the missing FETs. Then,
provide the Boolean expression computed by the gate (you do NOT need to expand the
expression into minimal sum of product form).

(i) (ii)

Boolean expression for W: Boolean expression for X:
W(A,B) = ____________________ X(A,B,C) = _________________________

(iii) (iv)

Boolean expression for Y: Boolean expression for Z:
Y(A,B,C,D,E) = _______________ Z(A,B,C,D,E,F,G) = __________________

6.191 Spring 2024 - 7 of 15 - Quiz #1

(B) (6 points) Octavian has found a schematic containing a truth table for function F. His sister’s
notes indicate that F can be implemented as a single CMOS gate.

Unfortunately, a few of the entries in the output column have been smudged beyond
recognition. Help Octavian fill out the truth table, and then draw the single CMOS gate that
would implement function F. For full credit, you must use a minimum number of FETs
to build your CMOS gate.

A B C F
0 0 0
0 0 1
0 1 0 1
0 1 1 0
1 0 0
1 0 1 1
1 1 0 0
1 1 1

CMOS gate drawing:

6.191 Spring 2024 - 8 of 15 - Quiz #1

(C) (6 points) Octavian discovered some circuits in an unlabeled box. Help him determine if
each of these circuits can be implemented as a single CMOS gate.

If it’s possible, draw the single CMOS gate that implements the circuit using a minimum
number of FETs. Otherwise, explain why not.

(i) CMOS gate or explanation:

(ii) CMOS gate or explanation:

6.191 Spring 2024 - 9 of 15 - Quiz #1

Problem 4: Combinational Circuits in Minispec (17 points)

A decoder is a combinational circuit that uniquely maps an n-bit input to a 2n-bit output. For each
possible input, only one bit of the output is high. This means you can select a single output based
on the input values. The truth table for a 2-to-4 decoder is given below. This decoder assigns a
value to each output wire and activates the appropriate one based on the value of {B1, B0}.

(A) (3 points) Draw a circuit that implements a 2-to-4 decoder using only inverters, 2-input ORs,

and 2-input ANDs. Make sure to clearly label all inputs (B0, B1) and to connect to the provided
output labels (D0, D1, D2, and D3). If you have crossing wires, make sure to clearly label
which wires are connected using a bold dot. For example, the diagram on the
right shows that the vertical wire is connected to the bottom horizontal wire but
not to the top one.

B1 B0 D3 D2 D1 D0

0 0 0 0 0 1

0 1 0 0 1 0

1 0 0 1 0 0

1 1 1 0 0 0

6.191 Spring 2024 - 10 of 15 - Quiz #1

(B) (2 points) Using the block diagram provided to represent your circuit from part (A), add any
necessary logic to convert the circuit to a 2-to-4 decoder with Enable. If Enable is 0, all output
bits should be 0, and if Enable is 1, the outputs should follow the truth table above.

(C) (3 points) Using only two 2-to-4 decoders with Enable and a single inverter, implement a 3-

to-8 decoder. Clearly label all inputs (B0-B2) and all outputs (D0-D7).

B0 D0
B1
en

D1
D2
D3

B0 D0
B1 D1

D2
D3

B0 D0
B1
en

D1
D2
D3

B0 D0
B1
en

D1
D2
D3

6.191 Spring 2024 - 11 of 15 - Quiz #1

(D) (9 points) Write a parametric recursive function in Minispec that implements a decoder with
enable. The two inputs of the function are an n-bit value (b) and a one-bit enable signal (en).
The function outputs a 2n bit output of all 0s if the enable is 0 and 2b if enable is 1. We provided
the first line for you to get you started.

function Bit#(2**n) decoder#(Integer n)(Bit#(n) b, Bit#(1) en);

6.191 Spring 2024 - 12 of 15 - Quiz #1

Problem 5. Timing and FSMs (22 points)

Consider the circuit below, with the timing parameters for flip-flops shown in the table to the
right.

(A) (2 points) If we want tCLK=1ns, what is the maximum propagation delay of the combinational

logic CL? What is the minimum contamination delay of CL for the circuit to work properly?

Max tPD,CL (ns):_________________

Min tCD,CL (ns):_________________

Suppose we have an implementation of CL that is too slow for our target tCLK. This would
normally require increasing tCLK, which can be undesirable (e.g., if this is part of a larger circuit,
CL is the slowest component, and CL is used infrequently). Instead, in this problem we’ll explore
an alternative option: using a multicycle path.

The circuit to the right is similar
to the one above, except that both
flip-flops have an enable signal,
EN. When EN=0, the flip-flop
does not update the Q output at
the rising edge of the clock, and
the D input can change arbitrarily
around a rising edge
without affecting Q. In
precise terms, the EN input
must obey the flip-flop’s
setup and hold constraints,
but the D input does not
when EN=0.

The timing diagram on the
right shows how this circuit
works for a 3-cycle
multicycle path: by
enabling the registers every
third cycle, CL can spend
three clock cycles
computing each output.

CLD Q D Q

CLK

FF1 FF2

Q1 D2D1 Q2 Flip-flop timing
parameters

tSETUP = 0.3ns
tHOLD = 0.1ns
tPD,FF = 0.2ns
tCD,FF = 0.1ns

CLK

tCLK

D1

Q1

en1

en2

D2

Q2

CLD Q D Q

CLK

FF1 FF2

Q1 D2D1 Q2

en1 en2

EN EN

6.191 Spring 2024 - 13 of 15 - Quiz #1

(B) (4 points) If we want tCLK=1ns, what is the maximum propagation delay of the combinational
logic CL in the above 3-cycle path? What is the minimum tCD for the circuit to work
properly?

Max tPD,CL (ns):_________________

Min tCD,CL (ns):_________________

Instead of enabling both registers every third cycle, let’s
design an FSM that controls the registers’ enable signals.

The FSM shown to the right has a single input, validIn, and
three outputs: readyIn, en1, and en2. The FSM should work
as follows:

• validIn=1 indicates that the D input of FF1 has a new value for the circuit to process.
• readyIn=1 indicates that the circuit is ready to process a new input value (i.e., it has

completed processing the previous value).
• A new computation starts only when readyIn and validIn are both 1. To start a

computation, the FSM sets en1=1, which makes FF1 sample its input value.
• Three cycles after the computation starts, the FSM must sample the output of CL, by

setting en2=1. The FSM must not sample CL earlier than 3 cycles, as that may cause
metastability.

• Immediately after the output of CL is sampled and available at the output Q2, the FSM
can accept a new input. If validIn is always 1, the FSM should start, and finish, a new
computation every 3 cycles.

(C) (7 points) Implement the FSM by (1) drawing and labeling all the missing transitions in the

state-transition diagram, and (2) writing the Boolean equations for all the outputs (note that
the outputs may depend on both the state and the validIn input).

typedef enum {Idle, Busy1, Busy2, Busy3} State;

function Bit#(3) computeFsmOutputs(State state, Bool validIn);

 Bool readyIn = (state == ___________ || state == ____________);

 Bool en1 = __;

 Bool en2 = __;
 …

Idle Busy1 Busy2 Busy3

FSM
validIn

CLK

readyIn
en1
en2

6.191 Spring 2024 - 14 of 15 - Quiz #1

(D) (5 points) Assume that states are encoded using 2-bit values as
shown to the right. Use your FSM from part C to fill in the truth
table below. Then implement the combinational circuit that
computes the next state (nextS1, nextS0) given the current state
(S1,S0) and the validIn input. Use the validIn input and S1 and S0
registers provided below. You can use NOT, AND, OR, and XOR
gates. For full credit, your circuit should not use more than eight
gates.

validIn S1 S0 nextS1 nextS0
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

State Encoding
Idle 00

Busy1 01
Busy2 10
Busy3 11

6.191 Spring 2024 - 15 of 15 - Quiz #1

(E) (2 points) Suppose that we implement the flip-flop with enable using a normal D flip-flop
without an enable and a mux, as shown below. Will any mux implementation work correctly?
If so, explain why. If not, give an example of how an inappropriate mux implementation
could cause metastability.

Hint: Remember that D can change
during the rising edge of the clock if
EN=0, and think about the guarantees
of the combinational contract.

(F) (2 points) To simplify our FSM, we want to get rid of en2 and use a normal flip-flop that

samples D every rising edge of the clock. What is the minimum contamination delay for CL
that would let us do this?

Hint: Look back at the timing diagram and determine what D2 must look like so that FF2 can
sample it every cycle.

Min tCD,CL (ns):_________________

END OF QUIZ 1!

D Q

CLK
FF

EN

D Q

CLK
FF

EN

0
1

