Please enter your name, Athena login name, and recitation section above. Enter your answers in the spaces provided below. Show your work for potential partial credit. You can use the extra white space and the back of each page for scratch work.
Problem 1: Operating Systems and Virtual Addresses (18 points)

Two processes, A and B, run RISC-V programs whose code is shown below. Code listings use virtual addresses. All pseudoinstructions in these programs translate into a single RISC-V instruction.

These processes run on a custom operating system that supports segmentation-based (base and bound) virtual memory, timer interrupts for scheduling processes, and a print_string system call for printing strings. Additionally, the processor does not support the pow (exponentiation) instruction, so the operating system emulates it in software. The syntax for the pow instruction is:

 pow rd, rs1, rs2

where Reg[rs1] contains the base number, and Reg[rs2] contains the exponent. The pow exception handler returns to the process that initially raised the exception after calculating the result of raising the base number in Reg[rs1] to the power of the exponent in Reg[rs2]. The result is stored in Reg[rd]. No other registers in the calling process are modified by the exception.

As usual, processes invoke syscalls with the ecall instruction. The print_string system call takes the address of a string to print as the argument in register a0, and syscall number 0x13 in register a7.

program for process A:
. = 0x100
 li a0, 5
 li a1, 4
 pow a0, a0, a1
 li a2, 0x420
 sw a0, 0(a2)
 li a0, 0x360
 ecall
 ret

. = 0x360
stringA:
 .ascii "process A completed"

program for process B:
. = 0x500
 li a0, 3
 li a1, 5
 pow a0, a0, a1
 li a2, 0x800
 sw a0, 0(a2)
 li a0, 0x620
 ecall
 ret

. = 0x620
stringB:
 .ascii "process B completed"
Assume virtual addresses are translated with the following base and bound registers:

- **process A**: base register = 0x50, bound register = 0x400;
- **process B**: base register = 0x460, bound register = 0x700.

(A) (5 points) The OS schedules Process A first, but the processor does not support the `pow` instruction, so the OS emulates it in software. What are the values of `a0`, `a1`, `a2`, and `pc` (in virtual address) when the common handler returns to Process A after emulating the `pow` instruction? Assume all registers are initialized to 0 when a process starts execution.

```
a0: __________
a1: __________
a2: __________
pc: __________
```

Explanation:

(B) (5 points) Just prior to Process A executing `li a2, 0x420`, a timer interrupt occurs and the OS switches to Process B. What are the values of `a0`, `a1`, `a2`, and `pc` (in virtual address) when the common handler returns to Process B? Assume all registers are initialized to 0.

```
a0: __________
a1: __________
a2: __________
pc: __________
```

Explanation:
(C) (4 points) In both Process A and Process B, which instructions (if any) involve illegal memory accesses that cause a segmentation fault? Explain why the instructions in your list result in segmentation faults and explain why all other instructions do not.

List of instructions that result in segmentation faults:

Explanation:

Assume that you correctly fixed Processes A and B so that there is no segmentation fault anymore.

(D) (4 points) During your testing, you notice both Process A and Process B still don’t correctly print the string "process A completed" and "process B completed". Explain why and how to fix Process A and Process B so that they print the strings as intended.

Explanation:

Fix:
Problem 2. Virtual Memory (20 points)

Consider a RISC-V processor that has 32-bit virtual addresses, 2^{24} bytes of physical memory, and uses a page size of 2^8 bytes.

(A) (2 points) Calculate the following parameters relating to the size of the page table assuming a single-level (flat) page table. Each page table entry contains a dirty bit and a resident bit.

Your final answer can be a product or exponent.

Number of entries in the page table: ________

Size of page table entry (in bits): ________

Size of the page table (in bits): ________

(B) (4 points) A program has been halted right before executing the following instruction, located at virtual address 0x3A0.

. = 0x3A0

lw x5, 0(x7) // x7 = 0x52C
sw x6, 4(x8) // x8 = 0x434

The first 8 entries of the page table are shown to the right. The page table uses an LRU replacement policy. Assume that all physical pages are currently in use.

<table>
<thead>
<tr>
<th>Virtual Address</th>
<th>VPN</th>
<th>Page Fault (Yes/No)</th>
<th>PPN</th>
<th>Physical Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>R</td>
<td>D</td>
<td>PPN</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0xAA</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0xA</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>LRU</td>
<td>1</td>
<td>0x3B</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>next LRU</td>
<td>1</td>
<td>0x24</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>0x1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
(C) (6 points) Fill in the final version of the Page Table after running the two instructions in part (B). You may leave a row blank to indicate that the row is unchanged from the original page table. You do not need to label any LRU entries.

<table>
<thead>
<tr>
<th>VPN</th>
<th>R</th>
<th>D</th>
<th>PPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Also, specify which PPN(s) were evicted, and which were written back to memory during execution of the two instructions from part (B). If there are no pages to list, then enter NONE.

Evicted PPN(s) (hex): ________________

Written back PPN(s) (hex): ________________

Problem continued on next page.
Now consider using a two-level hierarchical page table where the VPN is divided evenly between the first and second levels of hierarchy, so the 1st and 2nd level have the same number of bits.

<table>
<thead>
<tr>
<th>VPN</th>
<th>Page Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st level index</td>
<td>2nd level index</td>
</tr>
</tbody>
</table>

(D) (4 points) Calculate the following parameters relating to the size of each second-level page table. Each second-level page table entry contains a dirty bit and a resident bit. *Your final answer can be a product or exponent.*

Number of entries in each 2nd level page table: __________

Size of 2nd level page table entry (in bits): __________

Size of one 2nd level page table (in bits): __________

Number of pages required to hold one 2nd level page table: __________

(E) (4 points) Assume for simplicity that the size of each 1st level page table entry is equal to the size of a 2nd level page table entry (in bits). How much memory is needed to store the entire two-level hierarchical page table of a program that uses only the bottom 2Mbytes (2^{21} Bytes) of virtual addresses? First, find the number of pages required to hold the 1st level page table. Then, find the number of 2nd level page tables required for this process. *Your final answer can be a product or exponent.*

Number of pages required to hold 1st level page table: __________

Number of 2nd level page tables required for 2MByte process: __________

Number of pages needed to store the hierarchical page table of this process: __________
Problem 3: Dingo the Exception Detective (16 points)

Dingo is trying to write a program for his RISC-V Operating System. Unfortunately, he got ahead of himself and did not test his exception handler implementation. Instead, he just started writing a user-space assembly program and is now wondering why it’s not working. Help him figure out what’s wrong with his work-in-progress program and handler!

```
User-space Program

main:
  addi a1, zero, 0x600
  lw a0, 0(a1)
  lw a2, -4(a1)
  beqz a2, mylabel
  slli a3, a1, 4
  addi a0, a0, 4
  j done

mylabel:
  .word 0xdeadcafe // Invalid instr
  addi a3, zero, 0x400
  sw a0, 0(a3)
  sw a0, 0(a1)
  j done

Common Handler

handler:
  mret
  addi a4, a4, 1
  csrr a5, mepc
  addi a5, a5, 4
  csrw mepc, a5
```

Dingo found that the first `lw` instruction triggers an exception because 0x600 is not mapped into the program’s memory space. Assume that exceptions are handled lazily before entering the commit point (i.e., exceptions are triggered right before the instruction that causes the exception enters the Write Back stage). Also assume that the `mret` instruction acts like a branch instruction in that branch decisions are resolved in the EXE stage. The `mret` instruction updates the pc to the value in the `mepc` register.

(A) (6 points) Help Dingo fill out the pipeline diagram of the running program (starting at `main`) and answer the question below. Assume full bypassing. You do not need to show the use of bypass paths.

<table>
<thead>
<tr>
<th>Cycle</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>IF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>addi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>addi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXE</td>
<td></td>
<td></td>
<td>addi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEM</td>
<td></td>
<td></td>
<td>addi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>addi</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What instruction is in the IF stage in cycle 22? _______________
(B) (6 points) Dingo thinks he found the problem and updated his exception handler. Now the program runs to completion (i.e., it reaches the done label). Dingo thinks multiple exceptions occur while executing the program. He knows the first lw still causes an exception because **0x600 is not mapped into program’s memory space**, but he’s not sure which other instructions cause exceptions. To help you figure out which instructions caused an exception, Dingo provides a register dump that shows the contents of some registers at the time the process begins to repeatedly execute the j done instruction.

Assume that none of the instruction fetches cause exceptions. Also, assume all registers are zero at the start of execution. **Note that this exception handler does not save the state of the interrupted process, so registers are shared between the user program and the exception handler.**

For each instruction that triggers an exception, mark the corresponding [] box with an X. Additionally, fill in the missing values of the register dump. **Hint:** You can deduce many values in the code based on knowing the total number of exceptions triggered by this program.

As a reminder, **csrr rd, mepc** reads the value of the mepc register, writing it into the rd register. Likewise, **csr w mepc, rs1** writes the mepc register with the value of register rs1. **mret** returns to the address in the mepc register.

<table>
<thead>
<tr>
<th>Triggers</th>
<th>User-space Program</th>
<th>New Common Handler</th>
<th>Register Dump</th>
</tr>
</thead>
<tbody>
<tr>
<td>.= 0x100</td>
<td>main:</td>
<td>handler:</td>
<td>a1: 0x600</td>
</tr>
<tr>
<td></td>
<td>addi a1, zero, 0x600</td>
<td>addi a4, a4, 1</td>
<td></td>
</tr>
<tr>
<td>[]</td>
<td>lw a0, 0(a1)</td>
<td>csrr a5, mepc</td>
<td>a2: ________</td>
</tr>
<tr>
<td>X</td>
<td>lw a2, -4(a1)</td>
<td>addi a5, a5, 4</td>
<td></td>
</tr>
<tr>
<td>[]</td>
<td>beqz a2, mylabel</td>
<td>csrw mepc, a5</td>
<td>a3: ________</td>
</tr>
<tr>
<td>[]</td>
<td>slli a3, a1, 4</td>
<td>mret</td>
<td>a4: 0x3</td>
</tr>
<tr>
<td>[]</td>
<td>addi a0, a0, 4</td>
<td></td>
<td>a5: ________</td>
</tr>
<tr>
<td>j done</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mylabel:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[]</td>
<td>.word 0xdeadcafe</td>
<td>// invalid instr</td>
<td></td>
</tr>
<tr>
<td>[]</td>
<td>addi a3, zero, 0x400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[]</td>
<td>sw a0, 0(a3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[]</td>
<td>sw a0, 0(a1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>done:</td>
<td>j done</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dingo wants to emulate a new instruction (which his RISC-V processor does not implement) using his exception handler: the \texttt{0xdeadcafe} instruction. Dingo wants the opcode for this instruction to be \texttt{0xdeadcafe}. As you may have noticed, he already added this instruction to his program (with \texttt{.word 0xdeadcafe}). Now he wants to implement its functionality. Dingo wants this instruction, when executed, to set registers \texttt{a0} and \texttt{a1} to \texttt{0xdeadcafe}. Other exceptions should not change \texttt{a0} and \texttt{a1}. How can he achieve this by modifying his common handler? In your solution, use only temporary registers (\texttt{t0-}\texttt{t6}) and \texttt{a0}, \texttt{a1}, and \texttt{a5}.

```
handler:
    addi a4, a4, 1
    csrr a5, mepc

return:
    addi a5, a5, 4
    csrw mepc, a5
    mret
```
Problem 4. Synchronization (16 points)

Martha is opening a new pancake restaurant, and for the grand opening, she plans to have 100 guests over. She will be serving them all their special – a stack of 3 surprise pancakes, being any selection of blueberry, chocolate chip, banana, Nutella, or peanut butter pancakes.

However, she can’t make them all herself before the event starts, so she employs multiple pancake chefs to help her. Each chef operates as a thread running the `make_pancakes` function, whose pseudocode is shown below. Her one limitation is that her kitchen has only one pan.

```
Shared Memory:

// flavors is an array containing all possible flavors
flavors = ["blueberry", "chocolate", "banana", "nutella", "peanut butter"]
num_flavors = 5
flavor_idx = 0;

make_pancakes:

    // get next pancake flavor
    ingredient = flavors[flavor_idx]
    flavor_idx = (flavor_idx + 1) % num_flavors

    get_ingredients(ingredient)

    whisk()

    cook_on_pan()

    add_to_stack()

    goto make_pancakes
```

(A) (2 points) Suppose two threads, A and B, are running the `make_pancakes` code above without any synchronization. For each of the following failure scenarios, circle whether it is possible or not:

1. Initially, A and B start making the same flavor of pancake
 Possible / Not Possible

2. A and B both use the pan at the same time, resulting in a disgusting mix of flavors
 Possible / Not Possible
Martha has found parallelized cooking to be really efficient, but she realized she forgot about the plating and serving side of the restaurant! She has hired one waiter who can remove pancakes from the 1 stack made by all the chefs together to plate 3 pancakes at a time on a plate to then serve to the guests.

However, the waiter is also busy managing the storefront and doesn’t want to plate a stack of 3 pancakes to then serve if there are not at least 3 pancakes in the stack. Also, the stack will fall over if there are more than 9 pancakes, so a chef must wait to stack a cooked pancake if there are already 9 pancakes in the stack. Martha’s kitchen also only has 1 pan, so only one chef can be using the pan to cook their pancake at one time. Assume that there are more than 1 but fewer than 5 chefs and thus threads running the `make_pancakes` function, and that there is a single waiter and thus one thread running the `serve_pancakes` function.

(B) (14 points) Define and add semaphores on the next page to enforce these constraints:
1. Each chef should make the next available flavor of pancakes following the previous chef to select a flavor, with the first available flavor being blueberry and after a peanut butter pancake, blueberry should be made next.
2. Only one chef can be using the pan to cook their pancake at one time.
3. The stack should never have more than 9 pancakes.
4. `stack_3()` should never be called until there are at least 3 pancakes on the stack.
5. After 300 pancakes are made for the 100 guests, no more pancakes should be made.
6. As long as there are still pancakes left to be made, avoid deadlock.
7. Use no more than 5 semaphores, and do not add any additional precedence constraints.
Shared Memory:

// flavors is an array containing the possible flavors
flavors = [“blueberry”, “chocolate”, “banana”, “nutella”, “peanut butter”]
num_flavors = 5
flavor_idx = 0;

// Specify your semaphores and initial values here

make_pancakes:

// get next pancake flavor
ingredient = flavors[flavor_idx]
flavor_idx = (flavor_idx + 1) % num_flavors

get_ingredients(ingredient)
whisk()
cook_on_pan()
add_to_stack()
goto make_pancakes

serve_pancakes:

stack_3()

serve()
goto serve_pancakes
Problem 5. Cache Coherence (16 points)

Alice and Bob are two threads that exchange messages through a shared memory location L. Alice and Bob take turns accessing L: periodically, each of them wakes up, reads the message in L, and writes a new message in L for the other one to read. This results in the following memory access sequence:

Alice: read L
Alice: write L
Bob: read L
Bob: write L
Alice: read L
Alice: write L

Suppose that Alice and Bob run in two processor cores with private caches, kept coherent with a snoopy, bus-based, write-invalidate MESI protocol (whose state-transition diagram is shown above). Assume write-back, write-allocate caches.

(A) (4 points) Fill in the following table showing the bus transactions that result from each access, and the states for L’s cache line after each access.

<table>
<thead>
<tr>
<th>Access</th>
<th>Shared bus transactions</th>
<th>Alice’s cache</th>
<th>Bob’s cache</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial state</td>
<td></td>
<td>L: I</td>
<td>L: I</td>
</tr>
<tr>
<td>After Alice reads L</td>
<td></td>
<td>L:</td>
<td>L:</td>
</tr>
<tr>
<td>After Alice writes L</td>
<td></td>
<td>L:</td>
<td>L:</td>
</tr>
<tr>
<td>After Bob reads L</td>
<td></td>
<td>L:</td>
<td>L:</td>
</tr>
<tr>
<td>After Bob writes L</td>
<td></td>
<td>L:</td>
<td>L:</td>
</tr>
<tr>
<td>After Alice reads L</td>
<td></td>
<td>L:</td>
<td>L:</td>
</tr>
<tr>
<td>After Alice writes L</td>
<td></td>
<td>L:</td>
<td>L:</td>
</tr>
</tbody>
</table>

(B) (2 points) We are interested in minimizing the number of cache misses, i.e., accesses that cannot be satisfied by the local cache and result in a bus transaction. In steady state (i.e., after Alice and Bob have exchanged many messages), what is the hit rate of this sequence of accesses? **Consider every access that requires a bus transaction as a miss.**

Hit Rate: _____________

6.191 Spring 2023 - 14 of 19 - Quiz #3
(C) (2 points) Would using an MSI protocol (instead of MESI) improve hit rate? Briefly explain why or why not.

(D) (5 points) We add a self-invalidation instruction to the processor: \texttt{inv <address>} invalidates the cache line containing \texttt{<address>}. If the line is dirty, it is written back to main memory (through a BusWB transaction). Alice and Bob are modified to run \texttt{inv L} after they write \texttt{L}.

Fill in the diagram below, assuming that we use a MESI protocol. What is the hit rate of this access sequence in steady state? (\textbf{Consider only reads and writes as accesses; invs are not accesses.})

<table>
<thead>
<tr>
<th>Access</th>
<th>Shared bus transactions</th>
<th>Alice’s cache</th>
<th>Bob’s cache</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial state</td>
<td></td>
<td>L: I</td>
<td>L: I</td>
</tr>
<tr>
<td>After Alice reads L</td>
<td></td>
<td>L:</td>
<td>L:</td>
</tr>
<tr>
<td>After Alice writes L</td>
<td></td>
<td>L:</td>
<td>L:</td>
</tr>
<tr>
<td>After Alice invs L</td>
<td></td>
<td>L:</td>
<td>L:</td>
</tr>
<tr>
<td>After Bob reads L</td>
<td></td>
<td>L:</td>
<td>L:</td>
</tr>
<tr>
<td>After Bob writes L</td>
<td></td>
<td>L:</td>
<td>L:</td>
</tr>
<tr>
<td>After Bob invs L</td>
<td></td>
<td>L:</td>
<td>L:</td>
</tr>
</tbody>
</table>

\textbf{Hit rate for access sequence in steady state: ____________ \%}
(E) (3 points) This inv mechanism is too complicated for what we want to achieve—let’s keep it simple. Write the state-transition diagram for a two-state coherence protocol that improves hit rate over MESI for this access sequence. Name each of the two states, and include transitions to cover all processor and bus actions in the protocol. The table below shows all possible actions; you must support processor reads and writes, but need not use all possible bus actions in your protocol.

Your protocol should be write-invalidate, and work for write-back, write-allocate caches. Using your protocol, what is the hit rate of our access sequence?

<table>
<thead>
<tr>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor Read (PrRd)</td>
</tr>
<tr>
<td>Processor Write (PrWr)</td>
</tr>
<tr>
<td>Bus Read (BusRd)</td>
</tr>
<tr>
<td>Bus Read Exclusive (BusRdX)</td>
</tr>
<tr>
<td>Bus Writeback (BusWB)</td>
</tr>
</tbody>
</table>

Hit rate for access sequence in steady state with your protocol: ____________ %
Problem 6: Loop Ordering and Caches (14 points)

Consider the following program:

```c
int A[8][8];
int B[8][8];
int C[8][8][8];

for (int i = 0; i < 8; i++) {
    for (int j = 0; j < 8; j++) {
        for (int k = 0; k < 8; k++) {
            C[i][j][k] = A[i][j] + B[j][k];
        }
    }
}
```

Consider a three-way set associative cache with 4 sets. The block size is 4 words. This cache is only used for data, and not for instructions. The cache is partitioned across the arrays so that all accesses to array A map to way 0, array B map to way 1, and array C map to way 2 of the cache. Recall that arrays are stored in row major order in memory. For array C this means that the k elements of each C[i][j] are stored consecutively in memory, then come the next value of j with its k elements, and so on.

(A) (2 points) In the inner “k” loop, how many different elements of each array are accessed?

```
Inner “k” loop:

for (int k = 0; k < 8; k++) {
    C[i][j][k] = A[i][j] + B[j][k];
}
```

Elements of A: __________

Elements of B: __________

Elements of C: __________

(B) (2 points) What fraction of the accesses to elements of C are cache misses for the entire program?

Miss Rate: _______________
(C) (2 points) What fraction of the accesses to elements of B are cache misses for the entire program?

Miss Rate: ________________

(D) (2 points) What fraction of the accesses to elements of A are cache misses for the entire program?

Miss Rate: ________________

Consider reordering the loops as follows (swapping the j and k loops):

```java
for (int i = 0; i < 8; i++) {
    for (int k = 0; k < 8; k++) {
        for (int j = 0; j < 8; j++) {
            C[i][j][k] = A[i][j] + B[j][k];
        }
    }
}
```

Now answer the following questions with the same data cache as before.

(E) (2 points) What fraction of the accesses to elements of C are cache misses for the entire program?

Miss Rate: ________________
(F) (2 points) What fraction of the accesses to elements of B are cache misses for the entire program?

Miss Rate: ____________

(G) (2 points) What fraction of the accesses to elements of A are cache misses for the entire program?

Miss Rate: ____________

END OF QUIZ 3!