
1 /18
2 /17
3 /18
4 /19
5 /18
6 /10

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.191 Computation Structures
Fall 2025

Quiz #1

Name

SOLUTIONS
Athena login name Score

Recitation section
□ WF 10, 34-301 (Jan)
□ WF 11, 34-301 (Jan)
□ WF 12, 34-302 (Abdullah)
□ WF 1, 34-302 (Abdullah)

□ WF 2, 34-302 (Varun)
□ WF 3, 34-302 (Varun)
□ WF 10, 34-302 (Christina)
□ WF 11, 34-302 (Christina)

□ WF 12, 34-303 (Nathan)
□ WF 1, 34-303 (Nathan)
□ WF 2, 34-303 (Grace)
□ WF 3, 34-303 (Grace)
□ opt-out

Please enter your name, Athena login name, and recitation section above. Enter your answers in the
spaces provided below. Show your work for potential partial credit. You can use the extra white space and the
back of each page for scratch work.

6.191 Fall 2025 - 1 of 20 - Quiz #1

Problem 1. Digital Abstraction (18 points)

Suppose we define all signaling thresholds in our digital system to be relative to the supply voltage 𝑉𝐷𝐷:
𝑉𝑂𝐿 = 0.1𝑉𝐷𝐷
𝑉𝐼𝐿 = 0.5𝑉𝐷𝐷
𝑉𝐼𝐻 = 0.6𝑉𝐷𝐷
𝑉𝑂𝐻 = 0.8𝑉𝐷𝐷

Suppose we have some valid digital inverter F with supply voltage 𝑉𝐷𝐷,𝐹 = 10V and propagation delay of
50ns.

(A) (2 points)

Given the above specification for inverter F, determine the noise immunity of the device.

𝑉𝑂𝐿 = 1V, 𝑉𝐼𝐿 = 5V, 𝑉𝐼𝐻 = 6V, 𝑉𝑂𝐻 = 8V.
Low noise margin = 𝑉𝐼𝐿 −𝑉𝑂𝐿 = 4V, High noise margin = 𝑉𝑂𝐻 −𝑉𝐼𝐻 = 2V.

Noise Immunity (V): 2V

(B) (3 points)

Draw one potential voltage transfer curve for F. Please clearly label all signaling thresholds.

6.191 Fall 2025 - 2 of 20 - Quiz #1

(C) (3 points)

We apply constant input voltage 𝑉𝑖𝑛 to F for 30ns starting at time 𝑡 = 0ns and measure that 𝑉𝑜𝑢𝑡 = 9V at
𝑡 = 25ns. What can we conclude about 𝑉𝑖𝑛? Circle the correct answer and provide an explanation.

𝑉𝑖𝑛 is (select one): 𝑉𝑖𝑛 < 1V 𝑉𝑖𝑛 > 5V 𝑉𝑖𝑛 < 6V 𝑉𝑖𝑛 > 8V None of the above

Explanation: The propagation delay is 50ns; at 𝑡 = 25ns the output may not yet reflect the input, so no
conclusion.

(D) (3 points)

We apply constant input voltage 𝑉𝑖𝑛 to F for 60ns starting at time 𝑡 = 0ns and measure that 𝑉𝑜𝑢𝑡 = 0.5V
at 𝑡 = 50ns. What can we conclude about 𝑉𝑖𝑛? Circle the correct answer and provide an explanation.

𝑉𝑖𝑛 is (select one): 𝑉𝑖𝑛 < 1V 𝑉𝑖𝑛 > 5V 𝑉𝑖𝑛 < 6V 𝑉𝑖𝑛 > 8V None of the above

Explanation: By 𝑡 = 50ns the output reflects the input. Since F is an inverter and we observed a low
output (0.5V), the input must not have been a valid low input, so 𝑉𝑖𝑛 > 𝑉𝐼𝐻 = 5V. An output of 0.5V
could have resulted from either a valid high input or an invalid input.

(E) (4 points)

Now consider device G with the same signaling thresholds relative to its supply voltage 𝑉𝐷𝐷,𝐺 . In the
circuit below, under what range of supply voltages 𝑉𝐷𝐷,𝐺 will the system work correctly?

For G→F: 0.1𝑉𝐷𝐷,𝐺 ≤ 5V and 0.8𝑉𝐷𝐷,𝐺 ≥ 6V.
For F→G: 1V ≤ 0.5𝑉𝐷𝐷,𝐺 and 8V ≥ 0.6𝑉𝐷𝐷,𝐺 .
Combined: 7.5V ≤ 𝑉𝐷𝐷,𝐺 ≤ 13.33V.

Acceptable Range for 𝑉𝐷𝐷,𝐺: 7.5V ≤ 𝑉𝐷𝐷,𝐺 ≤ 13.33V

6.191 Fall 2025 - 3 of 20 - Quiz #1

(F) (3 points)

Now consider the following circuit below.

Circuit H follows the voltage transfer characteristic given below.

𝑽out =

{

8V (max(𝑽𝑨, 𝑽𝑩) ≥ 8V)

1V (max(𝑽𝑨, 𝑽𝑩) ≤ 1V)

What Boolean expression does 𝐻 (𝐴, 𝐵) implement? Express your answer in terms of 𝐴 and 𝐵.

Boolean Expression for 𝐻 (𝐴, 𝐵): 𝐴 + 𝐵

What gate does 𝑍 implement? Express your answer in terms of 𝑋 and 𝑌 .

Gate implemented by 𝑍: NAND(X, Y)

6.191 Fall 2025 - 4 of 20 - Quiz #1

Problem 2. Boolean Algebra (17 points)

(A) (5 points)

Consider the truth table given below:

a b c F
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

1. What is the normal form for 𝐹 (𝑎, 𝑏, 𝑐)?

Normal form for 𝐹: 𝑎𝑏𝑐 + 𝑎𝑏𝑐 + 𝑎𝑏𝑐 + 𝑎𝑏𝑐 + 𝑎𝑏𝑐 + 𝑎𝑏𝑐

2. Find two different minimal sum-of-products expressions for 𝐹 (𝑎, 𝑏, 𝑐).

Minimal SOP form 1:
𝐹 = 𝑎𝑏𝑐 + 𝑎𝑏𝑐 + 𝑎𝑏𝑐 + 𝑎𝑏𝑐 + 𝑎𝑏𝑐 + 𝑎𝑏𝑐

Next we combine the following terms:
- 𝑎𝑏𝑐 with 𝑎𝑏𝑐

- 𝑎𝑏𝑐 with 𝑎𝑏𝑐

- 𝑎𝑏𝑐 with 𝑎𝑏𝑐

= 𝑎𝑏(𝑐 + 𝑐) + 𝑎𝑐(𝑏 + 𝑏) + 𝑏𝑐(𝑎 + 𝑎)
= 𝑎𝑏 + 𝑎𝑐 + 𝑏𝑐

First minimal sum-of-products for 𝐹: 𝑎𝑏 + 𝑎𝑐 + 𝑏𝑐

Minimal SOP form 2:
𝐹 = 𝑎𝑏𝑐 + 𝑎𝑏𝑐 + 𝑎𝑏𝑐 + 𝑎𝑏𝑐 + 𝑎𝑏𝑐 + 𝑎𝑏𝑐

Next we combine the following terms:
- 𝑎𝑏𝑐 with 𝑎𝑏𝑐

- 𝑎𝑏𝑐 with 𝑎𝑏𝑐

- 𝑎𝑏𝑐 with 𝑎𝑏𝑐

= 𝑎𝑐(𝑏 + 𝑏) + 𝑏𝑐(𝑎 + 𝑎) + 𝑎𝑏(𝑐 + 𝑐)
= 𝑎𝑐 + 𝑏𝑐 + 𝑎𝑏

Second minimal sum-of-products for 𝐹: 𝑎𝑐 + 𝑏𝑐 + 𝑎𝑏

6.191 Fall 2025 - 5 of 20 - Quiz #1

(B) (3 points)

Can you construct a circuit for any possible Boolean function using just XOR and AND gates? If yes,
prove it. If no, provide a counterexample.

To construct a circuit for any possible Boolean function using just XOR and AND gates, we need to show
that we can implement AND, NOT and OR operations using these two gates.

We can perform AND operation directly using the AND gate.

Implementing NOT operation using XOR gate:
𝐴 ⊕ 𝐵 = 𝐴𝐵 + 𝐴𝐵

If we set 𝐵 = 1, then 𝐴 ⊕ 1 = 𝐴

Hence, we can perform NOT operation using XOR gate by setting 𝐵 = 1.

Implementing OR operation using XOR gate and AND gate:
Using De Morgan’s laws, A + B = 𝐴 · 𝐵
This helps us perform OR operation using just NOT and AND operations.
From previous results, we know that we can perform NOT operation using XOR gate by setting 𝐵 = 1
and we can perform AND operation using the AND gate.
Hence, we can perform OR operation using XOR gate and AND gate.

Hence, we can construct a circuit for any possible Boolean function using just XOR and AND gates.

(C) (3 points)

Implement the function 𝐺 = 𝐴 ⊕ 𝐵 = 𝑋𝑂𝑅(𝐴, 𝐵) using one 2-input OR, one 2-input AND, and one
2-input NAND gate. Using Boolean algebraic proprties, demonstrate that your circuit is equivalent
in functionality to an XOR gate.

𝐺 = 𝐴 ⊕ 𝐵 = 𝐴𝐵 + 𝐴𝐵 = 𝐴𝐴 + 𝐴𝐵 + 𝐴𝐵 + 𝐵𝐵 = (𝐴 + 𝐵) (𝐴 + 𝐵) = (𝐴 + 𝐵) (𝐴𝐵)
The circuit figure is below:

(D) (6 points)

6.191 Fall 2025 - 6 of 20 - Quiz #1

Determine whether each of the Boolean expressions below are satisfiable. If it is satisfiable, give an input
assignment that makes the expression satisfiable. You must provide a valid value for each variable. If it is
not satisfiable, show why it is not.

1. Expression (𝑎 + 𝑏) (𝑏 + 𝑐) (𝑐 + 𝑎) (𝑐 + 𝑑 + 𝑒) (𝑑 + 𝑓) (𝑓 + 𝑎 + 𝑏)

Satisfiable.
Input assignments that satisfy the expression are below:
Input assignment 1: 𝑎 = 0, 𝑏 = 0, 𝑐 = 0, 𝑑 = 0, 𝑒 = 0, 𝑓 = 0
Input assignment 2: 𝑎 = 1, 𝑏 = 1, 𝑐 = 1, 𝑑 = 0, 𝑒 = 1, 𝑓 = 0

2. Expression (𝑎 + 𝑏) (𝑏 + 𝑐) (𝑐 + 𝑑) (𝑑 + 𝑒) (𝑎 + 𝑒) (𝑎 ⊕ 𝑐 + 𝑓) (𝑓)

Not satisfiable.
For the expression to be satisfiable, 𝑓 term must be 1 and hence 𝑓 must be 0. Given that 𝑓 = 0,
the term (𝑎 ⊕ 𝑐 + 𝑓) reduces to (𝑎 ⊕ 𝑐), which must be 1. Thus 𝑎 and 𝑐 must differ.
Case 1: 𝑎 = 1. Then (𝑎 + 𝑏) reduces to 𝑏, so 𝑏 = 1. Next (𝑏 + 𝑐) reduces to 𝑐, so 𝑐 = 1,
contradicting 𝑎 ⊕ 𝑐 = 1.
Case 2: 𝑎 = 0. Then (𝑎 + 𝑒) reduces to 𝑒 so 𝑒 = 0; (𝑑 + 𝑒) reduces to 𝑑 so 𝑑 = 0; (𝑐 + 𝑑) reduces
to 𝑐 so 𝑐 = 0, again contradicting 𝑎 ⊕ 𝑐 = 1.
Hence this expression is not satisfiable.

6.191 Fall 2025 - 7 of 20 - Quiz #1

Problem 3. CMOS Logic (18 points)

(A) (12 points)

For each of the following four functions, determine if it can be implemented as a single CMOS gate. If
it can, draw the complete CMOS implementation using a minimal number of transistors. If not,
describe why it cannot be implemented as a single CMOS gate.

1. 𝐹 (𝐴, 𝐵, 𝐶, 𝐷) = 𝐴𝐵𝐷 + 𝐶

The simplified boolean expression is 𝐹 (𝐴, 𝐵, 𝐶, 𝐷) = 𝐴 + 𝐵 +𝐶 + 𝐷. The CMOS gate is shown
below:

2. 𝐹 (𝐴, 𝐵, 𝐶, 𝐷) = 𝐴𝐵 + 𝐶 · 𝐷

The simplified boolean expression is 𝐹 (𝐴, 𝐵, 𝐶, 𝐷) = (𝐴 + 𝐵) ·𝐶 · 𝐷. The CMOS gate is shown
below:

6.191 Fall 2025 - 8 of 20 - Quiz #1

3. 𝐹 (𝐴, 𝐵, 𝐶, 𝐷) = 𝐴 + 𝐷 · 𝐵 + 𝐶

The simplified boolean expression is 𝐹 (𝐴, 𝐵, 𝐶, 𝐷) = 𝐴 · 𝐵 · 𝐶 · 𝐷. F is not inverting, so it can’t
be implemented as a single CMOS gate. To formally prove that F is not inverting, one can observe
that, for example, F(0, 0, 0, 0) = 0, when every inverting function must output 1 when given all 0s.

4. 𝐹 (𝐴, 𝐵, 𝐶, 𝐷) = 𝐷 · (𝐴𝐵 + 𝐴𝐶)

The simplified boolean expression is 𝐹 (𝐴, 𝐵, 𝐶, 𝐷) = 𝐴 + 𝐷 + 𝐵 · 𝐶. The CMOS gate is shown
below:

(B) (6 points)

Given the following truth tables, find whether it is possible for F to be implemented using a single CMOS
gate. If it is possible, draw the CMOS gate using the least number of transistors possible. If it is not
possible, explain why.

1.
A B C F
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

F is not inverting, so it can’t be expressed as a single CMOS
gate. One proof of this is that F(0,0,1)=0 and F(0,1,1)=1.
Since flipping B from 0 to 1 causes the output to also flip
from 0 to 1, F is not inverting.

6.191 Fall 2025 - 9 of 20 - Quiz #1

2.
A B C F
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

F simplifies to 𝐹 (𝐴, 𝐵, 𝐶) = 𝐴 · 𝐵 · 𝐶 + 𝐴 · 𝐵 · 𝐶 + 𝐴 · 𝐵 ·
𝐶 + 𝐴 · 𝐵 · 𝐶 = 𝐴 · 𝐶 · (𝐵 + 𝐵) + 𝐴 · 𝐶 · (𝐵 + 𝐵) = 𝐶. The
CMOS gate is shown below:

6.191 Fall 2025 - 10 of 20 - Quiz #1

Problem 4. Combinational Minispec (19 points)

(A) (4 points)

The following parametric function g#(n) performs a specific operation using 𝑎, 𝑏 and 𝑐. We want the
function g_copy#(n) to implement g#(n) in a single line of code. Fill in the blanks in g_copy#(n) to
make the two functions equivalent. Write a single-line expression that uses the ternary operator (? :).
function Bit#(n) g#(Integer n)(Bit#(n) a, Bit#(1) b, Bit#(1) c);
Bit#(n) ret;
for(Integer i = 0; i < n; i = i + 1) begin
ret[i] = a[i] | (b ^ c);

end
return ret;

endfunction

function Bit#(n) g_copy#(Integer n)(Bit#(n) a, Bit#(1) b, Bit#(1) c);

return ((b^c) == 1) ? signExtend(1’b1) : a;

endfunction

In this function each bit of a is or’ed with (bˆc), resulting in one of two cases:
1. (bˆc) == 0 – Each bit of a is or’ed with 0, resulting in that same bit.
2. (bˆc) == 1 – Each bit of a is or’ed with 1, resulting in 1.
Note the parenthesis around bˆc are required, and so is specifing the number of bits in the signExtend.

(B) (4 points)

The following parametric function f#(n) performs a specific operation using 𝑎. We want the function
f_copy#(n) to implement f#(n) in a single line of code. Fill in the blank with a single expression to
make f_copy#(n) equivalent to f#(n).
function Bit#(n) f#(Integer n)(Bit#(n) a);
Bit#(n) ret;
for(Integer i = 0; i < n-1; i = i + 1) begin
ret[i] = a[i] | a[i+1];

end
ret[n-1] = a[n-1] | a[0];
return ret;

endfunction

function Bit#(n) f_copy#(Integer n)(Bit#(n) a);

return a | {a[0], a[n-1:1]};

endfunction

In this function a is or’ed with a copy of a shifted by one to the right. The MSB of a is or’ed with the
LSB, which is achieved by shifting in the LSB in the right shift.

6.191 Fall 2025 - 11 of 20 - Quiz #1

(C) (5 points)

Finish the following circuit diagram to implement function h, given below. You may use at most four
2-bit 2-to-1 multiplexers (shown below), and any number of constants (0, 1, 2, 3, ...). When drawing
multiplexers clearly specify each of the two inputs, the selector, and the output.

function Bit#(2) h(Bit#(3) a);
Bit#(2) ret = 2;
for(Integer i = 0; i < 3; i = i + 1) begin
if(a[i] == 1) begin
ret = i ^ 1;

end
end
return ret;

endfunction

Each if statement is synthesized into a multiplexer. The input values for these multiplexers are all either
constants derived from iˆ1 or are passed from the output of the previous multiplexer (when the if
condition is not met). No XOR gates are needed to evaluate iˆ1 since i is an Integer and the expression
is evaluated at compile time.

6.191 Fall 2025 - 12 of 20 - Quiz #1

(D) (6 points)

Alice wants to send Bob a secret message. For that purpose she implemented the following encode#(n)
function in minispec which obfuscates an 𝑛-bit message. She showed Bob her implementation and
now he has to come up with a decode#(n) function which will retrieve the original message (i.e.,
decode#(n)(encode#(n)(x))==x for all 𝑛-bit x). Help Bob implement the decode#(n) function
and answer the question about delay below. Make sure to provide a justification for the delay.
function Bit#(n) encode#(Integer n)(Bit#(n) message);
Bit#(n/2) upper;
Bit#(n - n/2) lower;
for(Integer i = 0; i < n; i = i + 1) begin
if(i % 2 == 0) begin
lower[i/2] = message[i];

end else begin
upper[i/2] = message[i];

end
end
return {upper, lower};

endfunction

function Bit#(n) decode#(Integer n)(Bit#(n) encr_message);
// Implement Bob’s function here

endfunction

function Bit#(n) decode#(Integer n)(Bit#(n) encr_message);

Bit#(n) message;
Bit#(n/2) upper = encr_message[n-1:n-n/2];
Bit#(n - n/2) lower = encr_message[n-n/2-1:0];
for(Integer i = 0; i < n; i = i + 1) begin
if(i % 2 == 0) begin
message[i] = lower[i/2];

end else begin
message[i] = upper[i/2];

end
end
return message;

endfunction

Alternative solution:
function Bit#(n) decode#(Integer n)(Bit#(n) encr_message);

Bit#(n) message;
for(Integer i = 0; i < n; i = i + 1) begin
if(i % 2 == 0) begin
message[i] = encr_message[i/2];

end else begin
message[i] = encr_message[n - n/2 + i/2];

end
end
return message;

6.191 Fall 2025 - 13 of 20 - Quiz #1

endfunction

Another alternative solution:
function Bit#(n) decode#(Integer n)(Bit#(n) encr_message);

Bit#(n) message;
for(Integer i = 0; i < n/2; i = i + 1) begin
message[2*i] = encrypted_message[i];
message[2*i+1] = encrypted_message[n - n/2 + i];

end
if(n % 2 == 1) begin
message[n-1] = encrypted_message[n/2];

end
return message;

endfunction

The delay of Alice’s implementation of encode#(n) is Θ(1)
Justification: Even though the function uses a for loop iterating from 0 to 𝑛− 1, the logic in each iteration
is independent, so the resulting hardware will be implemented in parallel. Each iteration only contains a
single assignment, so the resulting delay is Θ(1).

6.191 Fall 2025 - 14 of 20 - Quiz #1

Problem 5. Combinational and Sequential Logic Timing (18 points)

The TAs made a new circuit to be part of their Important-Computation-Machine™ but were busy writing this
exam so they’re asking the 6.191 students for help analyzing and improving their circuit. The gates they used
have the following characteristics:

Gate 𝒕𝑷𝑫 𝒕𝑪𝑫 𝒕𝑺𝑬𝑻𝑼𝑷 𝒕𝑯𝑶𝑳𝑫

AND2 1.4ns 0.5ns — —
OR2 1.6ns 0.2ns — —
XOR2 1.2ns 0.4ns — —
INV1 0.7ns 0.2ns — —
BUF1 1.0ns 1.0ns — —
IREG 0ns 0ns 0ns 0ns
REG 2.5ns 0.6ns 1.0ns 0.4ns

(A) (3 points)

What are the propagation and contamination delays for this combinational circuit they create as their first
design?

𝑡𝑃𝐷 (ns): 4.9ns
The longest path is the 𝐶 (or 𝐵) → 𝑂𝑅 → 𝐼𝑁𝑉 → 𝑋𝑂𝑅 → 𝐴𝑁𝐷 → 𝑂𝑈𝑇 path which has
𝑡𝑃𝐷 = 1.6 + 0.7 + 1.2 + 1.4 = 4.9𝑛𝑠.

𝑡𝐶𝐷 (ns): 0.9ns
The shortest path is the 𝐷 → 𝑋𝑂𝑅 → 𝐴𝑁𝐷 → 𝑂𝑈𝑇 path which has 𝑡𝐶𝐷 = 0.4 + 0.5 = 0.9.

Using the timing constraints from above, they designed a new sequential circuit based on the original
combinational circuit. Note that they used ideal registers, labeled IREG, for the input signals while the
other registers are regular registers, labeled REG.

6.191 Fall 2025 - 15 of 20 - Quiz #1

(B) (2 points)

Demonstrate that the sequential circuit satisfies all hold time constraints.

There are 8 register to register paths in our circuit that we need to show have valid hold time constraints:
𝐼𝑅𝐸𝐺 → 𝐴𝑁𝐷 → 𝐴𝑁𝐷 → 𝑅𝐸𝐺 : 0 + 0.5 + 0.5 ≥ 0.4
𝐼𝑅𝐸𝐺 → 𝐴𝑁𝐷 → 𝑅𝐸𝐺 : 0 + 0.5 ≥ 0.4
𝐼𝑅𝐸𝐺 → 𝐴𝑁𝐷 → 𝑅𝐸𝐺: same as above
𝐼𝑅𝐸𝐺 → 𝑂𝑅 → 𝐼𝑁𝑉 → 𝑅𝐸𝐺 : 0 + 0.2 + 0.2 ≥ 0.4
𝐼𝑅𝐸𝐺 → 𝑂𝑅 → 𝐼𝑁𝑉 → 𝑅𝐸𝐺: same as above
𝐼𝑅𝐸𝐺 → 𝑋𝑂𝑅 → 𝐴𝑁𝐷 → 𝑅𝐸𝐺 : 0 + 0.4 + 0.5 ≥ 0.4
𝑅𝐸𝐺 → 𝐴𝑁𝐷 → 𝐴𝑁𝐷 → 𝑅𝐸𝐺 : 0.6 + 0.5 + 0.5 ≥ 0.4
𝑅𝐸𝐺 → 𝑋𝑂𝑅 → 𝐴𝑁𝐷 → 𝑅𝐸𝐺 : 0.6 + 0.4 + 0.5 ≥ 0.4

(C) (3 points)

What is the shortest clock period that can be used for this circuit?

The longest register-to-register path is the 𝑅𝐸𝐺 → 𝐴𝑁𝐷 → 𝐴𝑁𝐷 → 𝑅𝐸𝐺 path which has setup
constraint 𝑡𝑃𝐷,𝑅𝐸𝐺 + 2 · 𝑡𝑃𝐷,𝐴𝑁𝐷 + 𝑡𝑆𝐸𝑇𝑈𝑃,𝑅𝐸𝐺 ≤ 𝑡𝐶𝐿𝐾 →2.5 + 2 ·1.4 + 1.0 = 6.3 ≤ 𝑡𝐶𝐿𝐾 .

Minimum 𝑡𝐶𝐿𝐾 (ns): 6.3ns

(D) (2 points)

What are the 𝑡𝑃𝐷 and 𝑡𝐶𝐷 values of the sequential circuit?

OUT is connected directly to the rightmost REG so 𝑡𝑃𝐷,𝑂𝑈𝑇 and 𝑡𝐶𝐷,𝑂𝑈𝑇 are just those of REG.

𝑡𝑃𝐷 (ns): 2.5ns

𝑡𝐶𝐷 (ns): 0.6ns

(E) (2 points)

6.191 Fall 2025 - 16 of 20 - Quiz #1

The TAs would like to switch out their AND gates for a different model, what’s the smallest 𝑡𝐶𝐷 the new
AND gates could have such that the circuit is still valid?

𝑡𝐶𝐷 (ns): 0.4ns
We’re limited by the 𝐼𝑅𝐸𝐺 → 𝐴𝑁𝐷 → 𝑅𝐸𝐺 path which must have 𝑡𝐶𝐷,𝐼𝑅𝐸𝐺+𝑡𝐶𝐷,𝐴𝑁𝐷 ≥ 𝑡𝐻𝑂𝐿𝐷,𝑅𝐸𝐺
i.e. 𝑡𝐶𝐷,𝐴𝑁𝐷 ≥ 0.4.

(F) (3 points)

These TAs are so fickle! After switching their AND gates they now also want to switch the REG registers.
Which of the following registers allows them to have the fastest clock frequency while still having a valid
circuit? Provide an explanation for your answer. Note that you should use the new AND gates and that
only the REG registers are being changed. The IREG ideal registers remain the same.

Register 𝒕𝑷𝑫 𝒕𝑪𝑫 𝒕𝑺𝑬𝑻𝑼𝑷 𝒕𝑯𝑶𝑳𝑫

REG (current) 2.5ns 0.6ns 1.0ns 0.4ns
REGA 1.4ns 0.7ns 0.5ns 0.5ns
REGB 1.6ns 0.1ns 0.8ns 0.3ns

Select one: REGA REGB Neither

Explanation: REGA breaks the hold constraint of the 𝐼𝑅𝐸𝐺 → 𝐴𝑁𝐷 → 𝑅𝐸𝐺 path when AND has the
new 𝑡𝐶𝐷 = 0.4𝑛𝑠. REGB is valid while cutting both the 𝑡𝑃𝐷 and 𝑡𝑆𝐸𝑇𝑈𝑃 of the register.

(G) (3 points)

After experimenting with their sequential circuit, they realized they need to strengthen the clock signal by
using a buffer to drive the clock of the rightmost register. Unfortunately, this adds skew to their clock
signal. Using the original AND and REG timing specifications, what is the minimum 𝑡𝐶𝐿𝐾 the
circuit can now use? If the circuit is not valid, then write "Invalid" and provide an explanation for
why the circuit is not valid.

6.191 Fall 2025 - 17 of 20 - Quiz #1

Minimum 𝑡𝐶𝐿𝐾 (ns) or Invalid + Explanation: Invalid

The buffer adds 1ns of skew which delays the rightmost register’s transition by 1ns. This breaks the hold
constraint via the 𝐼𝑅𝐸𝐺 → 𝐴𝑁𝐷 → 𝐴𝑁𝐷 → 𝑅𝐸𝐺 path since 𝑡𝐴𝑁𝐷2,𝐶𝐷 + 𝑡𝐴𝑁𝐷2,𝐶𝐷 = 0.5 + 0.5 <

𝑡𝑠𝑘𝑒𝑤 + 𝑡𝑅𝐸𝐺,𝐻𝑂𝐿𝐷 = 1.0 + 0.4.

6.191 Fall 2025 - 18 of 20 - Quiz #1

Problem 6. Bit Invader Finite State Machine (10 points)

You’re designing the logic for a simple enemy AI, the "Bit Invader", for a new retro arcade game. The
invader’s behavior is determined by a finite state machine that responds to the player’s position.

FSM Specifications:
• Inputs (2-bit SR): S (Player is in Sight (S=1) or not in Sight (S=0)), R (Player is in Range (R=1) or not in

Range (R=0)).
• Output (1-bit U): U=1 when the invader is attacking, U=0 otherwise.
• Initial State: The FSM’s default state is PATROL.

Behavioral Description:
• The invader starts in and remains in the PATROL state as long as the player is unseen. It begins a chase as

soon as the player is spotted.
• If visual contact is lost while in a chase, it reverts to PATROL.
• During a chase, the invader will attack if the player moves into close range.
• An attack is a single-cycle action that is always immediately followed by a single-cycle evasive maneuver.
• After the evasive maneuver, the invader resumes its chase if the player is still visible; otherwise, it returns to

PATROL.

(A) (5 points)

Draw the state transition diagram for the Bit Invader FSM.

• You must determine the minimum number of states required. Give each state a label (e.g., PATROL (P),
etc.).

• Label each state with its name and its corresponding output value for U.
• Label each transition arc with the input condition(s) (SR) that cause it.

This FSM can be implemented in 4 states: PATROL, CHASE, ATTACK, EVADE in this example.

6.191 Fall 2025 - 19 of 20 - Quiz #1

(B) (4 points)

For the following input sequence, determine the state and output for each cycle.

Cycle 1 2 3 4 5 6 7 8

Current State P C C A E C A E
Input (SR) 10 10 11 00 10 11 10 00
Next State C C A E C A E P
Output (W) 0 0 0 1 0 0 1 0

(C) (1 points)

How many flip-flops are required to implement this FSM?

Number of flip-flops: 2 flip-flops
This FSM can be implemented in 4 states, and therefore needs 2 bits to represent all states.

END OF QUIZ 1!

6.191 Fall 2025 - 20 of 20 - Quiz #1

