MASSACHUSETTS INSTITUTE OF TECHNOLOGY
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.191 Computation Structures

1 /18
2 /17
3 /18
4 /19
5 /18
6 /10

Fall 2025

Quiz #1
Name Athena login name Score

SOLUTIONS
Recitation section
o WF 10, 34-301 (Jan) o WF 2, 34-302 (Varun) o WF 12, 34-303 (Nathan)
o WF 11, 34-301 (Jan) o WF 3, 34-302 (Varun) o WF 1, 34-303 (Nathan)
o WF 12, 34-302 (Abdullah) o WF 10, 34-302 (Christina) o WF 2, 34-303 (Grace)
o WF 1, 34-302 (Abdullah) o WF 11, 34-302 (Christina) o WF 3, 34-303 (Grace)
o opt-out

Please enter your name, Athena login name, and recitation section above. Enter your answers in the
spaces provided below. Show your work for potential partial credit. You can use the extra white space and the

back of each page for scratch work.

6.191 Fall 2025 -10f20-

Quiz #1

Problem 1. Digital Abstraction (18 points)

Suppose we define all signaling thresholds in our digital system to be relative to the supply voltage Vpp:

Vor =0.1Vpp
Vi =0.5Vpp

Vig =0.6Vpp
Vor =0.8Vpp

Suppose we have some valid digital inverter F with supply voltage Vpp g = 10V and propagation delay of
50ms.

(A) (2 points)

Given the above specification for inverter F, determine the noise immunity of the device.

Vor =1V, Vi, =5V, Vg =6V, Vog = 8V.
Low noise margin = Vj; — Vor = 4V, High noise margin = Vo — V;g = 2V.

Noise Immunity (V): 2V

(B) (3 points)

Draw one potential voltage transfer curve for F. Please clearly label all signaling thresholds.

VOUT

10

o VIL=5,VOH=8

Vou 8

VIH=6, VOL=1

Voo 1

6.191 Fall 2025 -20f20- Quiz #1

(C) (3 points)

We apply constant input voltage V;,, to F for 30ns starting at time ¢ = Ons and measure that V,,,,; = 9V at
¢t = 25ns. What can we conclude about V;,,? Circle the correct answer and provide an explanation.

Vin is (select one): V;,, <1V V;, >5V V,, <6V V;,, >8V None of the above

Explanation: The propagation delay is 50ns; at # = 25ns the output may not yet reflect the input, so no
conclusion.

(D) (3 points)

We apply constant input voltage V;, to F for 60ns starting at time ¢ = Ons and measure that V,,,,; = 0.5V
at t = 50ns. What can we conclude about V;,,? Circle the correct answer and provide an explanation.

Vin is (select one): V;, <1V [V;, > 5V Vin <6V V;,, > 8V None of the above

Explanation: By r = 50ns the output reflects the input. Since F is an inverter and we observed a low
output (0.5V), the input must not have been a valid low input, so V;,, > Vig = 5V. An output of 0.5V
could have resulted from either a valid high input or an invalid input.

(E) (4 points)

Now consider device G with the same signaling thresholds relative to its supply voltage Vpp.g. In the
circuit below, under what range of supply voltages Vpp g will the system work correctly?

For G=F:0.1Vpp,c <5V and 0.8Vpp.g = 6V.
For F=G: 1V <0.5Vpp.g and 8V > 0.6Vpp :.
Combined: 7.5V < Vpp g < 13.33V.

Acceptable Range for Vpp g: 7.5V < Vpp g < 13.33V

6.191 Fall 2025 -30f20- Quiz #1

(F) (3 points)

Now consider the following circuit below.

T
/N

) - A)
\) out
H
)
y F B
/
) —

o /

Circuit H follows the voltage transfer characteristic given below.

Vo = 8V (max(V4,Vpg) > 8V)
TNV (max(Vy, Vi) < 1V)

What Boolean expression does H(A, B) implement? Express your answer in terms of A and B.

Boolean Expression for H(A,B): A+ B

What gate does Z implement? Express your answer in terms of X and Y.

Gate implemented by Z: NAND(X, Y)

6.191 Fall 2025 -4 of 20 - Quiz #1

Problem 2. Boolean Algebra (17 points)

(A) (5 points)

Consider the truth table given below:

el el K= =R R o el el RS)
O»—A»—A»—A»—A»—A»—AOH’

— ===l |] S

el Rl el =l il K=l T = K3}

1. What is the normal form for F(a, b, c)?

Normal form for F: abc + abc + abc + abc + abc + abc

2. Find two different minimal sum-of-products expressions for F(a, b, ¢).

Minim_al SOP form 1: B 3
F =abc +abc + abc + abc + abc + abc

Next we combine the following terms:
- abc with abc
- abc with abc
- abe with abe

=ab(c+c) +ac(b+b) +be(@+a)
=ab +ac+ bc B
First minimal sum-of-products for F: ab + ac + bc

Minim_al SOP form 2: B B
F =abc +abc + abc + abc + abc + abc

Next we combine the following terms:
- abe with abc
- abc with abc
- abc with abc

=ac(b +b) + be(a +a) + ab(c + c)

=ac + bc +ab 3
Second minimal sum-of-products for F': ac + bc + ab

6.191 Fall 2025 -50f20- Quiz #1

(B) (3 points)

Can you construct a circuit for any possible Boolean function using just XOR and AND gates? If yes,
prove it. If no, provide a counterexample.

To construct a circuit for any possible Boolean function using just XOR and AND gates, we need to show
that we can implement AND, NOT and OR operations using these two gates.

We can perform AND operation directly using the AND gate.

Implementing NOT operation using XOR gate:

A®B=AB+ AB

Ifweset B=1,then A& 1 =A

Hence, we can perform NOT operation using XOR gate by setting B = 1.

Implementing OR operation using XOR gate and AND gate:

Using De Morgan’s laws, A+ B=A - B

This helps us perform OR operation using just NOT and AND operations.

From previous results, we know that we can perform NOT operation using XOR gate by setting B = 1
and we can perform AND operation using the AND gate.

Hence, we can perform OR operation using XOR gate and AND gate.

Hence, we can construct a circuit for any possible Boolean function using just XOR and AND gates.

(C) (3 points)

Implement the function G = A @ B = XOR(A, B) using one 2-input OR, one 2-input AND, and one
2-input NAND gate. Using Boolean algebraic proprties, demonstrate that your circuit is equivalent
in functionality to an XOR gate.

G=A®B=AB+AB=AA+AB+AB+BB=(A+B)(A+B)=(A+B)(AB)
The circuit figure is below:

AL

B[

(D) (6 points)

6.191 Fall 2025 -6 0of 20 - Quiz #1

Determine whether each of the Boolean expressions below are satisfiable. If it is satisfiable, give an input
assignment that makes the expression satisfiable. You must provide a valid value for each variable. If it is
not satisfiable, show why it is not.

1. Expression (@ +b)(b+c)(C+a)(C+d+e)(d+ f)(f+a+Db)

Satisfiable.

Input assignments that satisfy the expression are below:
Input assignment 1: ¢ =0, =0,c =0,d =0,e =0, =0
Input assignment2: a = 1,b=1,c=1,d=0,e=1,f=0

2. Expression (@ +b)(b+c)(c+d)(d+e)(a+e)(a®c+ f)(f)

Not satisfiable. _
For the expression to be satisfiable, f term must be 1 and hence f must be 0. Given that f = 0,
the term (a @ ¢ + f) reduces to (a @ c), which must be 1. Thus a and ¢ must differ.

Case 1: a = 1. Then (a + b) reduces to b, so b = 1. Next (b + ¢) reduces to ¢, so ¢ = 1,
contradicting a ® ¢ = 1.

Case 2: a = 0. Then (a +) reduces to e so e = 0; (d + ¢) reduces to d so d = 0; (¢ + d) reduces
to ¢ so ¢ = 0, again contradicting a ® ¢ = 1.

Hence this expression is not satisfiable.

6.191 Fall 2025 -7 0of 20 - Quiz #1

Problem 3. CMOS Logic (18 points)

(A) (12 points)

For each of the following four functions, determine if it can be implemented as a single CMOS gate. If
it can, draw the complete CMOS implementation using a minimal number of transistors. If not,
describe why it cannot be implemented as a single CMOS gate.

1. F(A,B,C,D)=ABD +C

The simplified boolean expression is F(A, B,C,D) = A + B+ C + D. The CMOS gate is shown
below:

Vop

A

.
e
e

2. F(A,B,C,D)=AB+C-D

The simplified boolean expression is F(A, B, C,D) = (A + B) - C - D. The CMOS gate is shown
below:

6.191 Fall 2025 -8 0f 20 - Quiz #1

3. F(A,B,C,D)=A+D-B+C
The simplified boolean expression is F'(A,B,C,D) = A - B-C-D. Fisnot inverting, so it can’t
be implemented as a single CMOS gate. To formally prove that F is not inverting, one can observe
that, for example, F(0, 0, 0, 0) = 0, when every inverting function must output 1 when given all Os.
4. F(A,B,C,D)=D - (AB + AC)
The simplified boolean expression is F(A, B,C,D) = A + D + B - C. The CMOS gate is shown

below:
oo
e
ad[o4
8 :
F
c e
M
o
(B) (6 points)

Given the following truth tables, find whether it is possible for F to be implemented using a single CMOS
gate. If it is possible, draw the CMOS gate using the least number of transistors possible. If it is not
possible, explain why.

F is not inverting, so it can’t be expressed as a single CMOS
gate. One proof of this is that F(0,0,1)=0 and F(0,1,1)=1.
Since flipping B from 0 to 1 causes the output to also flip
from O to 1, F is not inverting.

e i k=l E=lE=1=]
e k== E=1E=] i --]
k=l =l =l =) o)
o|lo|Io|==lolol ™

6.191 Fall 2025 -9 0of 20 - Quiz #1

>—t>—a>—~>—oooo>

el k=l =l e k=1 =] B -~

k=l k=l =l =) @)

Ol = OO O =]

6.191 Fall 2025

F simplifies to F (A, B, C) =A -B-C+A-
A

C+A-B-C=A-C-(B+B)+A-
CMOS gate is shown below:

Voo

4L

A

- 10 of 20 -

Quiz #1

Problem 4. Combinational Minispec (19 points)

(A) (4 points)

The following parametric function g#(n) performs a specific operation using a, b and c. We want the
function g_copy#(n) to implement g#(n) in a single line of code. Fill in the blanks in g_copy#(n) to
make the two functions equivalent. Write a single-line expression that uses the ternary operator (? :).

function Bit#(n) g#(Integer n) (Bit#(n) a, Bit#(1) b, Bit#(1) c);
Bit#(n) ret;
for(Integer i = 0; i <n; i =i + 1) begin
ret[i] = a[i]l | (b * ©);
end
return ret;
endfunction

function Bit#(n) g_copy#(Integer n) (Bit#(n) a, Bit#(1) b, Bit#(1) <);
return ((bAc) == 1) ? signExtend(1’bl) : a;

endfunction

In this function each bit of a is or’ed with (b"c), resulting in one of two cases:
1. (b"c) == 0 — Each bit of a is or’ed with 0, resulting in that same bit.
2. (b"c) == 1-Eachbitof ais or’ed with 1, resulting in 1.

Note the parenthesis around b” ¢ are required, and so is specifing the number of bits in the signExtend.

(B) (4 points)

The following parametric function £#(n) performs a specific operation using a. We want the function
f_copy#(n) to implement £#(n) in a single line of code. Fill in the blank with a single expression to
make f_copy#(n) equivalent to £#(n).

function Bit#(n) f#(Integer n) (Bit#(n) a);
Bit#(n) ret;
for(Integer i = 0; i <n-1; i =i + 1) begin
ret[i] = a[i] | a[i+1];
end
ret[n-1] = a[n-1] | a[0];
return ret;
endfunction

function Bit#(n) f_copy#(Integer n) (Bit#(n) a);
return a | {a[0], a[n-1:1]1};

endfunction

In this function a is or’ed with a copy of a shifted by one to the right. The MSB of a is or’ed with the
LSB, which is achieved by shifting in the LSB in the right shift.

6.191 Fall 2025 - 11 of 20 - Quiz #1

(C) (5 points)

Finish the following circuit diagram to implement function h, given below. You may use at most four
2-bit 2-to-1 multiplexers (shown below), and any number of constants (0, 1, 2, 3, ...). When drawing
multiplexers clearly specify each of the two inputs, the selector, and the output.

function Bit#(2) h(Bit#(3) a);
Bit#(2) ret = 2;
for(Integer i = 0; i < 3; i =i + 1) begin
if(a[i] == 1) begin O
ret =i A 1;
end G'%_
end
return ret;
endfunction

a[o]

a1 [=2>— 20{ —— S ret

al21[=>>

Each if statement is synthesized into a multiplexer. The input values for these multiplexers are all either
constants derived from 1”1 or are passed from the output of the previous multiplexer (when the if
condition is not met). No XOR gates are needed to evaluate 1”1 since i is an Integer and the expression
is evaluated at compile time.

6.191 Fall 2025 - 12 of 20 - Quiz #1

(D) (6 points)

Alice wants to send Bob a secret message. For that purpose she implemented the following encode# (n)
function in minispec which obfuscates an n-bit message. She showed Bob her implementation and
now he has to come up with a decode#(n) function which will retrieve the original message (i.e.,
decode#(n) (encode#(n) (x))==x for all n-bit x). Help Bob implement the decode#(n) function
and answer the question about delay below. Make sure to provide a justification for the delay.
function Bit#(n) encode#(Integer n) (Bit#(n) message);
Bit#(n/2) upper;
Bit#(n - n/2) lower;
for(Integer i = 0; i <n; i =i + 1) begin
if(i % 2 == 0) begin
lower[i/2] = message[i];
end else begin
upper[i/2] = message[i];
end
end
return {upper, lower};
endfunction

function Bit#(n) decode#(Integer n) (Bit#(n) encr_message);
// Implement Bob’s function here

endfunction

function Bit#(n) decode#(Integer n) (Bit#(n) encr_message);

Bit#(n) message;
Bit#(n/2) upper = encr_message[n-1:n-n/2];
Bit#(n - n/2) lower = encr_message[n-n/2-1:0];
for(Integer i = 0; i <n; i =i + 1) begin
if(i % 2 == 0) begin
message[i] = lower[i/2];
end else begin
message[i] = upper[i/2];
end
end
return message;

endfunction
Alternative solution:

function Bit#(n) decode#(Integer n) (Bit#(n) encr_message);

Bit#(n) message;
for(Integer i = 0; i <n; i =i + 1) begin
if(i % 2 == 0) begin
message[i] = encr_message[i/2];
end else begin
message[i] = encr_message[n - n/2 + i/2];
end
end
return message;

6.191 Fall 2025 - 13 of 20 - Quiz #1

endfunction
Another alternative solution:

function Bit#(n) decode#(Integer n) (Bit#(n) encr_message);

Bit#(n) message;

for(Integer i = 0; i <n/2; i =1 + 1) begin
message[2*i] = encrypted_message[i];
message[2*i+1] = encrypted_message[n - n/2 + i];

end

if(n % 2 == 1) begin
message[n-1] = encrypted_message[n/2];

end

return message;

endfunction

The delay of Alice’s implementation of encode#(n) is ©(1)

Justification: Even though the function uses a for loop iterating from O to n — 1, the logic in each iteration
is independent, so the resulting hardware will be implemented in parallel. Each iteration only contains a
single assignment, so the resulting delay is ©(1).

6.191 Fall 2025 - 14 of 20 - Quiz #1

Problem 5. Combinational and Sequential Logic Timing (18 points)

The TAs made a new circuit to be part of their Important-Computation-Machine™ but were busy writing this
exam so they’re asking the 6.191 students for help analyzing and improving their circuit. The gates they used
have the following characteristics:

Gate tpp | tcp | tserup | tHOLD
AND2 | 1.4ns | 0.5ns — —
OR2 1.6ns | 0.2ns — —
XOR2 | 1.2ns | 0.4ns — —
INV1 0.7ns | 0.2ns — —
BUF1 | 1.0ns | 1.0ns — —
IREG Ons Ons Ons Ons
REG 2.5ns | 0.6ns 1.0ns 0.4ns

(A) (3 points)

What are the propagation and contamination delays for this combinational circuit they create as their first
design?

N -

tpp (ns): 4.9ns
The longest path is the C (or B) - OR — INV — XOR — AND — OUT path which has
tpp =1.6+0.7+ 1.2+ 1.4 =409ns.

tcp (ns): 0.9ns
The shortest path is the D — XOR — AND — OUT path which has tcp = 0.4+ 0.5 =0.9.

Using the timing constraints from above, they designed a new sequential circuit based on the original
combinational circuit. Note that they used ideal registers, labeled IREG, for the input signals while the
other registers are regular registers, labeled REG.

6.191 Fall 2025 - 15 of 20 - Quiz #1

»
%

A| > D Q é
IREG
—P >REG
D aQ D— b af—<=]out
IREG REG
—P —>
DC D Q
c=>> D Q REG Dj
IREG >

D|—>> D Q

v

CLK|—)>

(B) (2 points)

Demonstrate that the sequential circuit satisfies all hold time constraints.

There are 8 register to register paths in our circuit that we need to show have valid hold time constraints:
IREG - AND — AND —- REG :0+0.5+0.5>0.4

IREG - AND —- REG :0+0.5>04

IREG — AND — REG: same as above

IREG - OR - INV - REG:0+0.2+0.2>0.4

IREG — OR — INV — REG: same as above

IREG —- XOR - AND - REG:0+04+05>04

REG —- AND — AND —- REG :0.6+0.5+05>04

REG —- XOR —- AND - REG :0.6+04+05>04

(C) (3 points)

What is the shortest clock period that can be used for this circuit?

The longest register-to-register path is the REG — AND — AND — REG path which has setup
constraint IpD,REG *+ 2- 'pp AND T ISETUP,REG < ICLK —254214+1.0=63<tcrk.

Minimum 7¢7 g (ns): 6.3ns

(D) (2 points)

What are the rpp and tcp values of the sequential circuit?

OUT is connected directly to the rightmost REG so pp oyt and tcp our are just those of REG.
tpp (ms): 2.5ns
tcp (ms): 0.6ns

(E) (2 points)

6.191 Fall 2025 - 16 of 20 - Quiz #1

The TAs would like to switch out their AND gates for a different model, what’s the smallest #¢cp the new
AND gates could have such that the circuit is still valid?

tcp (ns): 0.4ns
We’re limited by the I[REG — AND — REG path which must have tcD,IREGTICD,AND Z tHOLD,REG
i.e. tcp.anp = 0.4.

(F) (3 points)

These TAs are so fickle! After switching their AND gates they now also want to switch the REG registers.
Which of the following registers allows them to have the fastest clock frequency while still having a valid
circuit? Provide an explanation for your answer. Note that you should use the new AND gates and that
only the REG registers are being changed. The IREG ideal registers remain the same.

Register tpp | Icp | ISETUP | tHOLD
REG (current) | 2.5ns | 0.6ns 1.0ns 0.4ns
REGA 1.4ns | 0.7ns | 0.5ns 0.5ns
REGB 1.6ns | 0.Ins | 0.8ns 0.3ns

Select one: REGA REGB Neither

Explanation: REGA breaks the hold constraint of the /[REG — AND — REG path when AND has the
new tcp = 0.4ns. REGB is valid while cutting both the pp and tsgryp of the register.

(G) (3 points)

After experimenting with their sequential circuit, they realized they need to strengthen the clock signal by
using a buffer to drive the clock of the rightmost register. Unfortunately, this adds skew to their clock
signal. Using the original AND and REG timing specifications, what is the minimum 7c; x the
circuit can now use? If the circuit is not valid, then write ''Invalid" and provide an explanation for
why the circuit is not valid.

A=) D aQ :
IREG >—D Q
—P >REG
s[=>> D a o aof—<=]out
IREG REG
—> —>
D a
c=> o a REG
IREG —P>
—
DE} D Q
IREG
—
> N CLK+ SKEW

6.191 Fall 2025 - 17 of 20 - Quiz #1

SKEW SKEW

1
1
1
1

CLK + SKEW |I | |
07/ -

L

ouT

Minimum ¢, g (ns) or Invalid + Explanation: Invalid
The buffer adds Ins of skew which delays the rightmost register’s transition by 1ns. This breaks the hold

constraint via the /IREG — AND — AND — REG path since IAND2,CD T TAND2,CD = 0.5+0.5<
tskew + IREG,HOLD = 1.0+ 0.4.

6.191 Fall 2025 - 18 of 20 - Quiz #1

Problem 6. Bit Invader Finite State Machine (10 points)

You're designing the logic for a simple enemy Al, the "Bit Invader", for a new retro arcade game. The
invader’s behavior is determined by a finite state machine that responds to the player’s position.

FSM Specifications:

* Inputs (2-bit SR): S (Player is in Sight (S=1) or not in Sight (S=0)), R (Player is in Range (R=1) or not in
Range (R=0)).

* Output (1-bit U): U=1 when the invader is attacking, U=0 otherwise.
* Initial State: The FSM’s default state is PATROL.

Behavioral Description:

* The invader starts in and remains in the PATROL state as long as the player is unseen. It begins a chase as
soon as the player is spotted.

« If visual contact is lost while in a chase, it reverts to PATROL.
* During a chase, the invader will attack if the player moves into close range.
* An attack is a single-cycle action that is always immediately followed by a single-cycle evasive maneuver.

* After the evasive maneuver, the invader resumes its chase if the player is still visible; otherwise, it returns to
PATROL.

(A) (5 points)

Draw the state transition diagram for the Bit Invader FSM.

* You must determine the minimum number of states required. Give each state a label (e.g., PATROL (P),
etc.).

» Label each state with its name and its corresponding output value for U.

 Label each transition arc with the input condition(s) (SR) that cause it.

10/11

00/01

N
\Q\

00/01

E A

A

U=0 00/01/10/11 U

[
-

This FSM can be implemented in 4 states: PATROL, CHASE, ATTACK, EVADE in this example.

6.191 Fall 2025 - 19 of 20 - Quiz #1

(B) (4 points)

For the following input sequence, determine the state and output for each cycle.

| Cycle 1]2][3]4]5]6[7]38]
CurrentState | P | C | C | A | E | C | A | E
Input (SR) 10 10| 11|00 | 10| 11| 10|00
Next State C|C|A|E|C|]A]|E]|P
Output (W) ojlojoj1|O0O|O0]T1]O0

(C) (1 points)

How many flip-flops are required to implement this FSM?

Number of flip-flops: 2 flip-flops

This FSM can be implemented in 4 states, and therefore needs 2 bits to represent all states.

6.191 Fall 2025

END OF QUIZ 1!

-20 of 20 -

Quiz #1

