
6.191 Spring 2024 - 1 of 17 - Quiz #3

M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.191 Computation Structures
Spring 2024

Quiz #3

Name

Athena login name

Score

Recitation section
o WF 10, 34-302 (Wendy) o WF 2, 34-302 (Catherine) o opt-out
o WF 11, 34-302 (Wendy) o WF 3, 34-302 (Catherine)
o WF 12, 34-302 (Adrianna) o WF 12, 35-308 (Shabnam)
o WF 1, 34-302 (Adrianna) o WF 1, 35-308 (Shabnam)

Please enter your name, Athena login name, and recitation section above. Enter your answers
in the spaces provided below. Show your work for potential partial credit. You can use the extra
white space and the back of each page for scratch work.

1 /12
2 /18
3 /18
4 /17
5 /16
6 /19

6.191 Spring 2024 - 2 of 17 - Quiz #3

Problem 1. Operating Systems (12 points)

Two processes, A and B, run the RISC-V programs shown below. Code listings use virtual
addresses. All pseudoinstructions in these programs translate into a single RISC-V instruction.

Program for process A Program for process B
. = 0x10
li t1, 0x20
add t0, t0, t1
addi t1, t0, 4
li a1, 0x505
sw a1, 0(t0)
unimp

. = 0x1000
xori t0, t0, 0x60
sw t1, 4(t0)
lw a1, 4(t0)
add t0, a1, t1
li t1, 0x100
unimp

These processes run on a custom OS that supports segmentation-based (base and bound) virtual
memory, and timer interrupts for scheduling processes. This OS has two unusual features:

First, this OS uses very frequent timer interrupts to interleave the execution of both processes:
process A is interrupted after executing only two instructions, and process B is interrupted after
executing only one instruction.

Second, the OS kernel does not save, restore, or access the temporary registers (t0-t6) when
servicing exceptions or context-switching across processes.

Assume if a register has not been modified as a result of an instruction, its default value is zero.

(A) (5 points) The OS schedules process B first. What are the values of registers t0, t1, a1,

pc		(in virtual address) in processes A and B after the fifth timer interrupt takes place?

 Process A:

t0: _0x80___________________
t1: _0x84___________________
a1: _0x505__________________
pc: _0x20___________________

 Process B:

t0: _0x80___________________
t1: _0x84___________________
a1: _0x20___________________
pc: _0x100C_________________

Process that OS returns control to after fifth timer interrupt: ___ A ______________

6.191 Spring 2024 - 3 of 17 - Quiz #3

(B) (3 points) Consider the same situation, but the OS now schedules process A first. What are
the values of registers t0, t1, a1, pc (in virtual address) in processes A and B after the
third timer interrupt is observed?

 Process A:

t0: _0x40___________________
t1: _0x44___________________
a1: _0x505__________________
pc: _0x20___________________

 Process B:

t0: _0x40___________________
t1: _0x44___________________
a1: _0x0____________________
pc: _0x1004_________________

Process that OS returns control to after third timer interrupt: __ B _______________

(C) (4 points) Since temporary registers are shared among processes in this OS, we may be able

to use them to implement synchronization primitives without using shared memory. Consider
the implementation of a semaphore below using the t6 register:

signal: addi t6, t6, 1

wait: ble t6, zero, wait
 addi t6, t6, -1

Assume that t6 is not used by any other code, and that processes can be interleaved
arbitrarily. Does this implementation work, and under what circumstances? Circle one of the
options below and explain your answer. Your explanation should justify the circumstances
in which this implementation works, and unless you find it works in all cases, include a
counterexample showing when it breaks.

1) Does not work even with two processes
2) Works only up to two processes
3) Works only up to three processes
4) Works with any number of processes

Explanation:

This implementation fails even for two processes because the instructions in sem_wait can
interleave arbitrarily. Suppose t6 == 1, process A runs blt and is context-switched on the
add instruction (which does not run), then process B runs through both instructions in
sem_wait, and finally there is a context-switch to A, which completed the add instruction.
The end result is that neither process A nor process B have blocked on sem_wait and t6==-1,
which is incorrect: one of the processes should have blocked, and t6 should not go below 0.

6.191 Spring 2024 - 4 of 17 - Quiz #3

Problem 2. Virtual Memory (18 points)

Consider a RISC-V processor that uses 228 bytes of virtual memory, 224 bytes of physical
memory, and uses a page size of 213 bytes.

(A) (2 points) Calculate the following parameters related to the size of the page table. Assume

each page table entry contains a dirty bit and a resident bit. Your final answer can be a prod-
uct or exponent.

Number of entries in the page table: ___215_____

Size of page table entry (in bits): ___13_____

(B) (2 points) If we changed the RISC-V processor to use a page size of 212 bytes, how would

each of the following change? Assume this is the only change being made to the system.

Number of virtual pages (select one of the choices below):

UNCHANGED … +1 … -1 … 2x … 0.5x … CAN’T TELL

Number of physical pages (select one of the choices below):

UNCHANGED … +1 … -1 … 2x … 0.5x … CAN’T TELL

Size of page table entries (in bits) (select one of the choices below):

UNCHANGED … +1 … -1 … 2x … 0.5x … CAN’T TELL

Number of page offset bits in virtual address (select one of the choices below):

UNCHANGED … +1 … -1 … 2x … 0.5x … CAN’T TELL

6.191 Spring 2024 - 5 of 17 - Quiz #3

Assume 212 byte pages for the rest of the problem.
 Page Table
(C) (4 points) A program has been halted right before ex-

ecuting the following instruction, located at virtual
address 0x674.

. = 0x674
lw x6, 8(x3) // x3 = 0x4FF8

The first 8 entries of the page table are shown to the
right. The page table uses an LRU replacement
policy. Assume that all physical pages are currently
in use.

In the table below, specify which virtual address(es) are accessed when executing this
instruction. For each virtual address, please indicate the VPN, whether or not the access
results in a page fault, the PPN, and the physical address. If there is not enough information
given to determine a given value, write N/A. Please write all numeric values in hexadecimal.

Virtual Address VPN Page Fault
(Yes/No) PPN Physical Address

0x674 0x0 No 0x13 0x13674

0x5000 0x5 Yes 0xB 0xB000

VPN R D PPN
0 1 0 0x13
1 1 0 0xFA
2 1 1 0x33

LRU ® 3 1 0 0xB
4 1 0 0x1
 5 0 --- ---
6 1 1 0x20
7 0 --- ---
 …

6.191 Spring 2024 - 6 of 17 - Quiz #3

(D) (5 points) Consider the same RISC-V processor. We add a 4-element, fully-associative Trans-
lation Lookaside Buffer (TLB) with an LRU replacement policy. A program running on the
processor is halted right before executing the following instruction located at address
0x34A0:

. = 0x34A0
lw x3, 0(x4) // x4 = 0xCACA0

The contents of the TLB and the first 8 entries of the page table are shown below. The page
table uses an LRU replacement policy. Assume that all physical pages are currently in use.

 Page Table

 TLB

In the table below, specify which virtual address(es) are accessed when executing this
instruction. For each virtual address, please indicate the VPN, whether or not the access
results in a TLB Hit, whether or not the access results in a page fault, the PPN, and the
physical address. If there is not enough information given to determine a given value, please
write N/A. Please write all numerical values in hexadecimal.

Virtual
Address VPN TLB Hit

(Yes/No)
Page Fault
(Yes/No) PPN Physical

Address

0x34A0 0x3 No Yes 0x30 0x304A0

0xCACA0 0xCA Yes No 0x31 0x31CA0

(E) (2 points) Using the page table from part (D), please indicate the PPN corresponding to the

physical page that would be evicted upon a page fault, and if that physical page would need
to be written back to disk.

Evicted physical page number (0x): _____30______

Writeback necessary (Yes/No): ____Yes_____

VPN R D PPN
0 1 0 0x12
1 1 1 0xFA

LRU ® 2 1 1 0x30
3 0 --- ---

Next LRU ® 4 1 0 0xE
 5 1 1 0x4
6 1 0 0x70
7 1 1 0x85
 …

 VPN V R D PPN
 LRU ® 0xD1 1 1 0 0x0
 0xCA 1 1 1 0x31
 0xCAC 1 1 1 0x8
 0x7 1 1 0 0x99

6.191 Spring 2024 - 7 of 17 - Quiz #3

(F) (3 points) Now consider a different processor with a 4-bit VPN that is translated to a PPN us-
ing the two-level hierarchical page table shown below. The top 2 bits of the VPN are used as
the first level index, and the bottom 2 bits of the VPN are used as the second level index. The
bottom 12 bits of the virtual address are the page offset.

Translate the following virtual addresses to physical addresses using this two-level
hierarchical page table. If a virtual address does not map to a physical address according to
the diagram above, then write PAGE FAULT.

Virtual Address Physical Address

0x9345 (VPN = 0b10_01) PAGE FAULT

0xEBAA (VPN = 0b11_10) 0x6BAA

0x7899 (VPN = 0b01_11) 0x8899

6.191 Spring 2024 - 8 of 17 - Quiz #3

Problem 3. Exceptions (18 points)

Paige Tabelle is using a RISC-V system with segmentation-based virtual memory and is currently
running Process A in user space with base register = 0x300 and bound register = 0x1000.

(A) (2 points) For the following 2 accesses, find whether a bound violation exception occurs. If

the virtual address is in bounds, translate it to a physical address. Otherwise, write N/A.

i. 0xD50 Out of bounds: YES NO Physical Address:____ 0x1050____

ii. 0x200 Out of bounds: YES NO Physical Address:_____ 0x500_____

Paige did not test her implementation of Process A, so her program encounters several exceptions
during execution. To handle these exceptions, Paige implements a toy handler in kernel-space
that counts the number of exceptions before continuing execution of Process A.

Process A runs on a standard RISC-V processor. Assume all registers are zero at the start of
execution, and that exceptions are enabled.

(B) (4 points) Help Paige determine which instructions in Process A trigger an exception. In the

listing below, write a Y in the brackets in the first column for each instruction that causes an
exception. Leave all other brackets blank.

 Instr. // Process A code

address .= 0xFC8
[] 0x0FC8 li a0, 0x0
[] 0x0FCC li a7, 0x18
[Y] 0x0FD0 ecall
[] 0x0FD4 li a0, 0x100
[] 0x0FD8 li a1, 0x400
[] 0x0FDC li a2, 0x345
 loop:
[] 0x0FE0 sw a2, 0(a0)
[] 0x0FE4 addi a0, a0, 4
[] 0x0FE8 blt a0, a1, loop
[] 0x0FEC lui a3, 0x2
[Y] 0x0FF0 lw a4, 0(a3)
[Y] 0x0FF4 .word 0xcafe
[] 0x0FF8 mv a2, zero
[] 0x0FFC add a1, a1, zero
[Y] 0x1000 add a0, a0, zero
[Y] 0x1004 ret

 xori a7, a7, 2 // some extra
 andi a7, a7, 7 // code

// Toy handler in
// kernel space

handler:
 addi a5, a5, 1

csrr a6, mepc
addi a6, a6, 4
csrw mepc, a6

 mret

 slli a7, a7, 1

andi a7, a7, 8
xori a7, a7, 5

6.191 Spring 2024 - 9 of 17 - Quiz #3

In the questions below, assume we use a standard 5-stage pipelined processor with full
bypassing, where branches are predicted not taken and resolved in EXE. You do not need to
show any bypass paths that are used.

(C) (4 points) Fill in the pipeline diagram below beginning with the blt instruction at the end of
loop. Assume execution is on the last loop iteration (a0 = 0x400 when execution reaches
the blt instruction). Assume that exceptions are handled lazily (i.e., at the commit point).

 100 101 102 103 104 105 106 107

IF blt li lw (0xcafe) mv add addi csrr

DEC blt li lw (0xcafe) mv NOP addi

EXE blt li lw (0xcafe) NOP NOP

MEM blt li lw NOP NOP

WB blt li NOP NOP

(D) (4 points) Paige explores other ways of exception handling. Assume now that exceptions are

handled eagerly (i.e., in the stage that triggers them, like branches). Fill in the pipeline dia-
gram below beginning with the blt instruction at the end of loop. Assume execution is on
the last loop iteration (a0 = 0x400 when execution reaches the blt instruction).

 100 101 102 103 104 105 106 107

IF blt li lw (0xcafe) mv addi addi csrr

DEC blt li lw (0xcafe) NOP NOP addi

EXE blt li lw NOP NOP NOP

MEM blt li lw NOP NOP

WB blt li NOP NOP

(E) (4 points) Assume that the add a0, a0, zero instruction raises an exception. Paige’s toy

handler has almost finished handling this exception. Complete the pipeline diagram below to
show how the handler returns execution to Process A. Assume that exceptions are handled
lazily, and that mret is resolved in the EXE stage, like normal branches.

 300 301 302 303 304 305 306

IF addi csrw mret slli andi ret xori

DEC addi csrw mret slli NOP ret

EXE addi csrw mret NOP NOP

MEM addi csrw mret NOP

WB addi csrw mret

6.191 Spring 2024 - 10 of 17 - Quiz #3

Problem 4. Synchronization (17 points)

Octavian the octopus has enlisted a horde of his baby brothers to make paper flower bouquet
party favors for his older sister’s birthday party, and simultaneously trick them into practicing
their addition skills by keeping a counter on a shared chalkboard.

Octavian has come up with a procedure for his baby brothers to follow, the bouquetHelper
function described in pseudocode below. Unfortunately, his baby brothers are bad at sharing, so
they can’t take flowers from the table at the same time.

Shared Memory:

leaf_counter = 0;

bouquetHelper:
 take_3_flowers_from_table()
 assemble_bouquet()
 count = count_leaves()
 sum = leaf_counter + count
 leaf_counter = sum
 put_away_bouquet()
 goto bouquetHelper

(A) (3 points) Suppose three of Octavian’s brothers, Orange, Olive, and Ochre, follow the

bouquetHelper code above without any synchronization. Assume they add numbers
correctly. For each of the following failure scenarios, circle whether it is possible or not:

1. leaf_counter is at value 5. Orange counts 1 leaf and Olive counts 3, and

leaf_counter is still at 5 after Orange and Olive update it:
Possible / Not Possible

2. leaf_counter is at value 0. Orange counts 6 leaves, Olive counts 2, and Ochre counts

4. leaf_counter ends up being 10:
Possible / Not Possible

3. Olive and Ochre try to take paper flowers from the table at the same time, which causes

them to start fighting:
Possible / Not Possible

Octavian is in charge of actually making the paper flowers, via the flowerMaker procedure.
Armed with a stack of colored paper, he cuts out each individual flower, folds it into the right
shape, then places it on the table for his baby brothers to take. One sheet of paper can be used for
2 flowers, and Octavian doesn’t want to pick up more sheets of paper than needed.

In addition, the table only has enough space for 12 paper flowers before they start falling on the
ground, and remember that Octavian’s baby brothers cannot be trusted to take flowers from the
table at the same time. Assume that Octavian has at least 3 baby brothers helping him, using the
bouquetHelper procedure, and his goal is to make a total of 60 bouquets.

6.191 Spring 2024 - 11 of 17 - Quiz #3

(B) (14 points) Define and add semaphores below to enforce these constraints:
1. Octavian and his baby brothers should finish making exactly 60 bouquets, with 3 paper

flowers per bouquet, and should not begin any steps for making more bouquets.
2. The final value of leaf_counter is the total number of leaves in all of the bouquets.
3. The table holds at most 12 paper flowers at any given time.
4. Only 1 baby brother can take paper flowers from the table at the same time. There must

be at least 3 flowers on the table whenever a brother tries to take flowers.
5. Before all 60 bouquets have been finished, avoid deadlock.
6. Use at most 5 semaphores, and do not add any additional precedence constraints.

Shared Memory:
leaf_counter = 0;
// Specify your semaphores and initial values here
paper = 90
tableSpace = 12
flowerReady = 0
tableLock = 1
counterLock = 1
flowerMaker:
 wait(paper)
 get_sheet_of_paper()

 cut_and_fold_flower()

 wait(tableSpace)
 put_flower_on_table()
 signal(flowerReady)

 cut_and_fold_flower()

 wait(tableSpace)
 put_flower_on_table()
 signal(flowerReady)

 goto flowerMaker

bouquetHelper:
 wait(tableLock)
 wait(flowerReady)
 wait(flowerReady)
 wait(flowerReady)
 take_3_flowers_from_table()
 signal(tableLock)
 signal(tableSpace)
 signal(tableSpace)
 signal(tableSpace)
 assemble_bouquet()

 count = count_leaves()

 wait(counterLock)
 sum = leaf_counter + count

 leaf_counter = sum
 signal(counterLock)

 put_away_bouquet()

 goto bouquetHelper

6.191 Spring 2024 - 12 of 17 - Quiz #3

Problem 5. Cache Coherence (16 points)

Consider a four-core system where each core has a private cache. Caches are kept coherent using
a snoopy-based, write-invalidate MSI protocol, shown below. The caches are initially empty.

(A) (6 points) Complete the Access and Shared bus transactions columns of the following par-

tially filled in table. If there are multiple bus transactions, list them in order.

Core A Core B Core C Core D
LD X
ST X

LD X
ST X

LD X
ST X

LD X
ST X

Access Shared bus transactions Cache

A
Cache
B

Cache
C

Cache
D

Initial state X: I X: I X: I X: I
Core: _B_
Inst: __LD X1__ BusRd X X: I X: S X: I X: I
Core: _B_
Inst: __ST X1__ BusRdX X X: I X: M X: I X: I
Core: _A_
Inst: __LD X1__ BusRd X à BusWB X X: S X: S X: I X: I
Core: _C_
Inst: __LD X1__ BusRd X X: S X: S X: S X: I
Core: _A_
Inst: __ST X1__ BusRdX X X: M X: I X: I X: I
Core: _D_
Inst: __LD X1__ BusRd X à BusWB X X: S X: I X: I X: S
Core: _D_
Inst: __ST X1__ BusRdX X X: I X: I X: I X: M
Core: _C_
Inst: __ST X1__ BusRdX X à BusWB X X: I X: I X: M X: I

Main	Memory

Core	A Core	B Core	C Core	D

Cache	A Cache	B Cache	C Cache	D

Bus

6.191 Spring 2024 - 13 of 17 - Quiz #3

(B) (6 points) Now consider a two-core system where each core has a private cache. These
caches are kept coherent using a snoopy-based, write-invalidate MESI protocol, as shown
below. The caches are initially empty.

We examine a new sequence of accesses on addresses X and Y. Fill in the following table
showing the bus transactions that result from each access, and the cache contents, along with the
state of each line. Each cache can hold only one line. Clearly indicate the line in the cache and
its state (e.g., “X: I”, “Y: S”, etc.). If there are multiple bus transactions, list them in order.

Access Shared bus transactions Cache A Cache B

Initial state X: I X: I

Core: A
Inst: LD X A: BusRd X X: E X: I

Core: A
Inst: ST X --- X: M X: I

Core: A
Inst: ST Y

A: BusWB X (evict),
A: BusRdX Y Y: M X: I

Core: B
Inst: LD Y

B: BusRd Y
à A: BusWB Y Y: S Y: S

Core: B
Inst: ST X B: BusRdX X Y: S X: M

Core: A
Inst: ST Y A: BusRdX Y Y: M X: M

Core: A
Inst: ST X

A: BusWB Y (evict),
A: BusRdX X
à B: BusWB X

X: M X: I

Core: B
Inst: ST X

B: BusRdX X
à A: BusWB X X: I X: M

Main	Memory

Core	A Core	B

Cache	A Cache	B

Bus

6.191 Spring 2024 - 14 of 17 - Quiz #3

(C) (4 points) Consider the same two-core system as before. We’re interested in comparing the
performance of the MESI and MSI protocols.
Note: In the questions below, it is sufficient to consider sequences of at most three accesses,
and any sequence you give should have at most three accesses.

a. Are there access sequences that result in more traffic with MSI than MESI? If so, give an

access sequence that shows more bus transactions in MSI. If not, explain why not.

Yes. LD X followed by ST X causes BusRd followed by BusRdX with MSI, but only a
BusRd in MESI.

b. Are there access sequences that result in more traffic with MESI than MSI? If so, give an
access sequence that shows more transactions in MESI. If not, explain why not.

No, MESI (at least bus-based) does not incur more traffic than MSI. The E state
causes a BusRd to get more permissions than needed (E instead of S), so the one case
that could cause more traffic is LD X on core A (A: I->E n MESI, I->S on MSI)
followed by LD X or ST X on core B (B: I->S; A: E->S in MESI, whereas there’s no
transition in MSI). But this E->S transition does not cause a bus transaction.

6.191 Spring 2024 - 15 of 17 - Quiz #3

Problem 6. Parallel Processing and Performance Engineering (19 points)

(A) (5 points) Reorder the following loops to maximize data locality. Assume arrays are stored in

row-major order, and each cache line stores multiple elements of each array.

(i)

for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 C[i][i] += A[j][j] * B[j][i];

Reordered loop nest:

for (int j = 0; j < N; j++)

 for (int i = 0; i < N; i++)

 C[i][i] += A[j][j] * B[j][i];

(ii)

for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 for (int k = 0; k < N; k++)
 for (int m = 0; m < N; m++)
 C[i][m][k] += A[k][i][m] * B[m][j][k];

Reordered loop nest:

for (int i = 0; i < N; i++)

 for (int m = 0; m < N; m++)

 for (int j = 0; j < N; j++)

 for (int k = 0; k < N; k++)

 C[i][m][k] += A[k][i][m] * B[m][j][k];

6.191 Spring 2024 - 16 of 17 - Quiz #3

(B) (8 points) The following three programs multiply three NxN matrices with different loop

orderings. The matrices are stored in row-major order. Each program runs on a 4-way cache
with a total of 256 words and a block size of 8 words.

Program 1:
for (int i = 0; i < N; i++)
 for (int k = 0; k < N; k++)
 for (int m = 0; m < N; m++)
 for (int j = 0; j < N; j++)

 D[i][j] += A[i][k] * B[k][m] * C[m][j];

Program 2:
for (int j = 0; j < N; j++)
 for (int i = 0; i < N; i++)
 for (int k = 0; k < N; k++)
 for (int m = 0; m < N; m++)
 D[i][j] += A[i][k] * B[k][m] * C[m][j]

Program 3:

 for (int k = 0; k < N; k++)
 for (int m = 0; m < N; m++)
 for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)

 D[i][j] += A[i][k] * B[k][m] * C[m][j];

Assume that data cache and instruction cache are separate. For different values of N, which
program is optimal in terms of data cache misses? Circle one option.

(i) N = 4

Program 1 Program 2 Program 3 All are the same.

(ii) N = 8

Program 1 Program 2 Program 3 All are the same.

(iii) N = 16

Program 1 Program 2 Program 3 All are the same.

(iv) N = 64

Program 1 Program 2 Program 3 All are the same.

6.191 Spring 2024 - 17 of 17 - Quiz #3

(C) (6 points) Tile the optimal program that you chose in (B)-(iv) (i.e., N = 64) using a tile size of
T elements per dimension (i.e., each matrix should be accessed in tiles of TxT elements
each). Write the full loop nest of this tiled program. Assume N is a multiple of T.

for (int i = 0; i < N; i+=T)
 for (int k = 0; k < N; k+=T)
 for (int m = 0; m < N; m+=T)
 for (int j = 0; j < N; j+=T)
 for (int ii = i; ii < i + T; ii++)
 for (int kk = k; kk < k + T; kk++)
 for (int mm = m; mm < m + T; mm++)
 for (int jj = j; jj < j + T; jj++)
 D[ii][jj] += A[ii][kk] * B[kk][mm] * C[mm][jj];

Assuming the same cache configuration as in (B)-(iv), what is the maximum value of T that
would minimize cache misses?

Maximum value of T: ____8________ elements per dimension

