
6.191 Spring 2023 - 1 of 19 - Quiz #3

M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.191 Computation Structures
Spring 2023

Quiz #3

Name

Athena login name

Score

Recitation section
o WF 10, 34-302 (Alexandra) o WF 2, 34-302 (Boom) o opt-out
o WF 11, 34-302 (Alexandra) o WF 3, 34-302 (Boom)
o WF 12, 34-302(Georgia) o WF 12, 35-308 (Keshav)
o WF 1, 34-302 (Georgia) o WF 1, 35-308 (Keshav)

Please enter your name, Athena login name, and recitation section above. Enter your answers
in the spaces provided below. Show your work for potential partial credit. You can use the extra
white space and the back of each page for scratch work.

1 /18
2 /20
3 /16
4 /16
5 /16
6 /14

6.191 Spring 2023 - 2 of 19 - Quiz #3

Problem 1: Operating Systems and Virtual Addresses (18 points)

Two processes, A and B, run RISC-V programs whose code is shown below. Code listings use
virtual addresses. All pseudoinstructions in these programs translate into a single RISC-V
instruction.

These processes run on a custom operating system that supports segmentation-based (base and
bound) virtual memory, timer interrupts for scheduling processes, and a print_string system
call for printing strings. Additionally, the processor does not support the pow (exponentiation)
instruction, so the operating system emulates it in software. The syntax for the pow instruction is:

 pow rd, rs1, rs2

where Reg[rs1] contains the base number, and Reg[rs2] contains the exponent. The pow
exception handler returns to the process that initially raised the exception after calculating the
result of raising the base number in Reg[rs1] to the power of the exponent in Reg[rs2]. The result
is stored in Reg[rd]. No other registers in the calling process are modified by the exception.

As usual, processes invoke syscalls with the ecall instruction. The print_string system call
takes the address of a string to print as the argument in register a0, and syscall number 0x13 in
register a7.

program for process A:
. = 0x100
 li a0, 5
 li a1, 4
 pow a0, a0, a1
 li a2, 0x420
 sw a0, 0(a2)
 li a0, 0x360
 ecall
 ret

. = 0x360
stringA:
 .ascii "process A completed"

program for process B:
. = 0x500
 li a0, 3
 li a1, 5
 pow a0, a0, a1
 li a2, 0x800
 sw a0, 0(a2)
 li a0, 0x620
 ecall
 ret

. = 0x620
stringB:
 .ascii "process B completed"

6.191 Spring 2023 - 3 of 19 - Quiz #3

Assume virtual addresses are translated with the following base and bound registers:
process A: base register = 0x50, bound register = 0x400;
process B: base register = 0x460, bound register = 0x700.

(A) (5 points) The OS schedules Process A first, but the processor does not support the pow

instruction, so the OS emulates it in software. What are the values of a0, a1, a2, and pc (in
virtual address) when the common handler returns to Process A after emulating the pow
instruction? Assume all registers are initialized to 0 when a process starts execution.

a0: __54 or 625__

a1: _____4_____

a2: _____0_____

pc: ___0x10C___

Explanation:

After the OS emulates pow and returns control, a0 stores the result of pow (5^4
= 625), a1 stores 4, and a2 is at its initial value, which is 0.

The OS returns control to the instruction following pow, at pc = 0x100 + 3*4 =
0x10C

(B) (5 points) Just prior to Process A executing li a2, 0x420, a timer interrupt occurs and the

OS switches to Process B. What are the values of a0, a1, a2, and pc (in virtual address) when
the common handler returns to Process B? Assume all registers are initialized to 0.

a0: ____0______

a1: ____0______

a2: ____0______

pc: ___0x500___

Explanation:

Since Process B hasn’t run yet, the pc is the pc of the first instruction (i.e.,
0x500), and a0, a1 and a2 are at their initial value, which is 0.

6.191 Spring 2023 - 4 of 19 - Quiz #3

(C) (4 points) In both Process A and Process B, which instructions (if any) involve illegal
memory accesses that cause a segmentation fault? Explain why the instructions in your list
result in segmentation faults and explain why all other instructions do not.

List of instructions that result in segmentation faults:

Process A: sw a0, 0(a2)
Process B: sw a0, 0(a2)

Explanation:

The sw instructions in both processes cause segmentation faults because their virtual
addresses (0x420 in Process A and 0x800 in Process B) are over process bounds, i.e.,
0x400 and 0x700.
The rest of the instructions are located within each process’s bound, so they do not
cause segmentation faults.

Assume that you correctly fixed Processes A and B so that there is no segmentation fault
anymore.

(D) (4 points) During your testing, you notice both Process A and Process B still don't correctly

print the string "process A completed" and "process B completed". Explain why and how to
fix Process A and Process B so that they print the strings as intended.

Explanation:

Both the processes cannot print correctly because the sys_call code "0x13" is not stored
in a7. This means that the "print_string" function will not get called by the syscall_eh
exception handler and nothing will be printed.

Fix:

 For Process A: insert `li a7, 0x13` between `li a0, 0x360` and `ecall`
 For Process B: insert `li a7, 0x13` between `li a0, 0x620` and `ecall`

6.191 Spring 2023 - 5 of 19 - Quiz #3

Problem 2. Virtual Memory (20 points)

Consider a RISC-V processor that has 32-bit virtual addresses, 2!" bytes of physical memory,
and uses a page size of 2# bytes.

(A) (2 points) Calculate the following parameters relating to the size of the page table assuming a

single-level (flat) page table. Each page table entry contains a dirty bit and a resident bit.
Your final answer can be a product or exponent.

Number of entries in the page table: ____224____

Size of page table entry (in bits): ____18____

Size of the page table (in bits): __18*224___

 Page Table
(B) (4 points) A program has been halted right

before executing the following instruction,
located at virtual address 0x3A0.

. = 0x3A0
lw x5, 0(x7) // x7 = 0x52C
sw x6, 4(x8) // x8 = 0x434

The first 8 entries of the page table are shown to
the right. The page table uses an LRU
replacement policy. Assume that all physical
pages are currently in use.

For each virtual address accessed, please indicate, in the chart below, the virtual address, the
VPN, whether or not the access results in a page fault, the PPN, and the physical address. If
there is not enough information given to determine a given value, please write N/A. Please
write all numerical values in hexadecimal.

Virtual Address VPN Page Fault

(Yes/No)
PPN Physical Address

0x3A0 0x3 Yes 0x3B 0x3BA0

0x52C 0x5 Yes 0x1 0x12C

0x3A4 0x3 No 0x3B 0x3BA4

0x438 0x4 No 0xA 0xA38

VPN R D PPN
0 1 0 0xAA
1 1 0 0x43
2 0 --- ---
3 0 --- ---
4 1 0 0xA

 LRU ® 5 1 1 0x3B
6 1 1 0x24

next LRU ® 7 1 0 0x1
 …

6.191 Spring 2023 - 6 of 19 - Quiz #3

(C) (6 points) Fill in the final version of the Page Table after running the two instructions in part
(B). You may leave a row blank to indicate that the row is unchanged from the original
page table. You do not need to label any LRU entries.

Also, specify which PPN(s) were evicted, and which were written back to memory during
execution of the two instructions from part (B). If there are no pages to list, then enter NONE.

Evicted PPN(s) (hex): ______0x3B, 0x1______

Written back PPN(s) (hex): _______0x3B ________

Problem continued on next page.

VPN R D PPN
0
1
2
3 1 0 0x3B
4 1 1 0xA
 5 1 0 0x1
6
7 0 --- ---
 …

6.191 Spring 2023 - 7 of 19 - Quiz #3

Now consider using a two-level hierarchical page table where the VPN is divided evenly between
the first and second levels of hierarchy, so the 1st and 2nd level have the same number of bits.

VPN Page Offset
1st level index 2nd level index Page Offset

(D) (4 points) Calculate the following parameters relating to the size of each second-level page

table. Each second-level page table entry contains a dirty bit and a resident bit. Your final
answer can be a product or exponent.

Number of entries in each 2nd level page table: _____212______

Size of 2nd level page table entry (in bits): _____18______

Size of one 2nd level page table (in bits): ____18*212____

18*212 bits = 18 * 29 * 23 bits = 18 * 29 bytes = 36 * 28 bytes = 36 pages

Number of pages required to hold one 2nd level page table: _____36______

(E) (4 points) Assume for simplicity that the size of each 1st level page table entry is equal to the

size of a 2nd level page table entry (in bits). How much memory is needed to store the entire
two-level hierarchical page table of a program that uses only the bottom 2Mbytes (2!$ Bytes)
of virtual addresses? First, find the number of pages required to hold the 1st level page table.
Then, find the number of 2nd level page tables required for this process. Your final answer can
be a product or exponent.

212 * 18 bits = 36 pages

Number of pages required to hold 1st level page table: _____36_____

2 Mbytes = 221 Bytes
Process memory / page size = number of pages used by this process = 221 / 28 = 213

Each 2nd level page table holds the mapping of 212 addresses, so we need 2 2nd level page
tables to map 213 addresses

Number of 2nd level page tables required for 2MByte process: ____2_____

36 + 2 * 36 = 108
Number of pages needed to store the hierarchical page table of this process: ____108___

6.191 Spring 2023 - 8 of 19 - Quiz #3

Problem 3: Dingo the Exception Detective (16 points)

Dingo is trying to write a program for his RISC-V Operating System. Unfortunately, he got ahead
of himself and did not test his exception handler implementation. Instead, he just started writing a
user-space assembly program and is now wondering why it’s not working. Help him figure out
what’s wrong with his work-in-progress program and handler!

User-space Program

.= 0x100
main:
 addi a1, zero, 0x600
 lw a0, 0(a1)
 lw a2, -4(a1)
 beqz a2, mylabel
 slli a3, a1, 4
 addi a0, a0, 4
 j done

mylabel:
 .word 0xdeadcafe
 addi a3, zero, 0x400
 sw a0, 0(a3)
 sw a0, 0(a1)
done:
 j done

Common Handler

handler:
 mret
 addi a4, a4, 1
 csrr a5, mepc
 addi a5, a5, 4
 csrw mepc, a5

// Invalid instr

Dingo found that the first lw instruction triggers an exception because 0x600 is not mapped
into the program’s memory space. Assume that exceptions are handled lazily before entering
the commit point (i.e., exceptions are triggered right before the instruction that causes the
exception enters the Write Back stage). Also assume that the mret instruction acts like a branch
instruction in that branch decisions are resolved in the EXE stage. The mret instruction updates
the pc to the value in the mepc register.

(A) (6 points) Help Dingo fill out the pipeline diagram of the running program (starting at main)

and answer the question below. Assume full bypassing. You do not need to show the use of
bypass paths.

Cycle 0 1 2 3 4 5 6 7 8 9

IF addi lw lw bez slli mret addi csrr lw lw

DEC addi lw lw bez NOP mret addi NOP lw

EXE addi lw lw NOP NOP mret NOP NOP

MEM addi lw NOP NOP NOP mret NOP

WB addi NOP NOP NOP NOP mret

What instruction is in the IF stage in cycle 22? ______ lw _______

6.191 Spring 2023 - 9 of 19 - Quiz #3

(B) (6 points) Dingo thinks he found the problem and updated his exception handler. Now the
program runs to completion (i.e., it reaches the done label). Dingo thinks multiple exceptions
occur while executing the program. He knows the first lw still causes an exception because
0x600 is not mapped into program’s memory space, but he’s not sure which other
instructions cause exceptions. To help you figure out which instructions caused an exception,
Dingo provides a register dump that shows the contents of some registers at the time the
process begins to repeatedly execute the j done instruction.

Assume that none of the instruction fetches cause exceptions. Also, assume all registers are
zero at the start of execution. Note that this exception handler does not save the state of
the interrupted process, so registers are shared between the user program and the
exception handler.

For each instruction that triggers an exception, mark the corresponding [] box with
an X. Additionally, fill in the missing values of the register dump. Hint: You can deduce
many values in the code based on knowing the total number of exceptions triggered by this
program.

As a reminder, csrr rd, mepc reads the value of the mepc register, writing it into the rd
register. Likewise, csrw mepc, rs1 writes the mepc register with the value of register rs1.
mret returns to the address in the mepc register.

Triggers
Exception?

 []
 [X]
[]
 []
 []
 []

[X]
 []
 []
[X]

User-space Program

.= 0x100
main:
 addi a1, zero, 0x600
 lw a0, 0(a1)
 lw a2, -4(a1)
 beqz a2, mylabel
 slli a3, a1, 4
 addi a0, a0, 4
 j done

mylabel:
 .word 0xdeadcafe
 addi a3, zero, 0x400
 sw a0, 0(a3)
 sw a0, 0(a1)
done:
 j done

New Common Handler

handler:
 addi a4, a4, 1
 csrr a5, mepc
 addi a5, a5, 4
 csrw mepc, a5
 mret

// invalid instr

Register Dump

a1: __0x600__

a2: ____0____

a3: __0x400__

a4: ___0x3___

a5: __0x12C__

mepc: __0x12C__

6.191 Spring 2023 - 10 of 19 - Quiz #3

(C) (4 points) Dingo wants to emulate a new instruction (which his RISC-V processor does not
implement) using his exception handler: the 0xdeadcafe instruction. Dingo wants the
opcode for this instruction to be 0xdeadcafe. As you may have noticed, he already added
this instruction to his program (with .word 0xdeadcafe). Now he wants to implement its
functionality. Dingo wants this instruction, when executed, to set registers a0 and a1 to
0xdeadcafe. Other exceptions should not change a0 and a1. How can he achieve this by
modifying his common handler? In your solution, use only temporary registers (t0-t6) and
a0, a1, and a5.

handler:
 addi a4, a4, 1
 csrr a5, mepc

 li t0, 0xdeadcafe
 lw t1, 0(a5)
 bne t1, t0, return
 li a0, 0xdeadcafe
 li a1, 0xdeadcafe

 // or equivalent…

return:
 addi a5, a5, 4
 csrw mepc, a5
 mret

6.191 Spring 2023 - 11 of 19 - Quiz #3

Problem 4. Synchronization (16 points)

Martha is opening a new pancake restaurant, and for the grand opening, she plans to have 100
guests over. She will be serving them all their special – a stack of 3 surprise pancakes, being any
selection of blueberry, chocolate chip, banana, Nutella, or peanut butter pancakes.

However, she can’t make them all herself before the event starts, so she employs multiple
pancake chefs to help her. Each chef operates as a thread running the make_pancakes function,
whose pseudocode is shown below. Her one limitation is that her kitchen has only one pan.

Shared Memory:

// flavors is an array containing all possible flavors
flavors = [“blueberry”, “chocolate”, “banana”, “nutella”,
 “peanut butter”]
num_flavors = 5
flavor_idx = 0;

make_pancakes:

//get next pancake flavor
ingredient = flavors[flavor_idx]
flavor_idx = (flavor_idx + 1) % num_flavors

get_ingredients(ingredient)

whisk()

cook_on_pan()

add_to_stack()

goto make_pancakes

(A) (2 points) Suppose two threads, A and B, are running the make_pancakes code above

without any synchronization. For each of the following failure scenarios, circle whether it is
possible or not:

1. Initially, A and B start making the same flavor of pancake

 Possible / Not Possible

2. A and B both use the pan at the same time, resulting in a disgusting mix of flavors

Possible / Not Possible

6.191 Spring 2023 - 12 of 19 - Quiz #3

Martha has found parallelized cooking to be really efficient, but she realized she forgot about the
plating and serving side of the restaurant! She has hired one waiter who can remove pancakes
from the 1 stack made by all the chefs together to plate 3 pancakes at a time on a plate to then
serve to the guests.

However, the waiter is also busy managing the storefront and doesn’t want to plate a stack of 3
pancakes to then serve if there are not at least 3 pancakes in the stack. Also, the stack will fall
over if there are more than 9 pancakes, so a chef must wait to stack a cooked pancake if there are
already 9 pancakes in the stack. Martha’s kitchen also only has 1 pan, so only one chef can be
using the pan to cook their pancake at one time. Assume that there are more than 1 but fewer than
5 chefs and thus threads running the make_pancakes function, and that there is a single waiter
and thus one thread running the serve_pancakes function.

(B) (14 points) Define and add semaphores on the next page to enforce these constraints:
1. Each chef should make the next available flavor of pancakes following the previous chef

to select a flavor, with the first available flavor being blueberry and after a peanut butter
pancake, blueberry should be made next.

2. Only one chef can be using the pan to cook their pancake at one time.
3. The stack should never have more than 9 pancakes.
4. stack_3() should never be called until there are at least 3 pancakes on the stack.
5. After 300 pancakes are made for the 100 guests, no more pancakes should be made.
6. As long as there are still pancakes left to be made, avoid deadlock.
7. Use no more than 5 semaphores, and do not add any additional precedence constraints.

6.191 Spring 2023 - 13 of 19 - Quiz #3

Shared Memory:

// flavors is an array containing the possible flavors
flavors = [“blueberry”, “chocolate”, “banana”, “nutella”, “peanut butter”]
num_flavors = 5
flavor_idx = 0;

// Specify your semaphores and initial values here
remaining_orders = 300
pancake_idx = 1
pan = 1
stack_space = 9
on_stack = 0
make_pancakes:

wait(remaining_orders)

wait(pancake_idx)

//get next pancake flavor
ingredient = flavors[flavor_idx]
flavor_idx = (flavor_idx + 1) % num_flavors

signal(pancake_idx)

get_ingredients(ingredient)

whisk()

wait(pan)

cook_on_pan()

signal(pan)

wait(stack_space)

add_to_stack()

signal(on_stack)

goto make_pancakes

serve_pancakes:

wait(on_stack)
wait(on_stack)
wait(on_stack)

stack_3()

signal(stack_space)
signal(stack_space)
signal(stack_space)

 serve()

 goto serve_pancakes

6.191 Spring 2023 - 14 of 19 - Quiz #3

Problem 5. Cache Coherence (16 points)

Alice and Bob are two threads that exchange messages through a shared memory location L.
Alice and Bob take turns accessing L: periodically, each of them wakes up, reads the message in
L, and writes a new message in L for the other one to read. This results in the following memory
access sequence:

Alice: read L
Alice: write L
Bob: read L
Bob: write L
Alice: read L
Alice: write L

…

Suppose that Alice and Bob run in two processor cores with private caches, kept coherent with a
snoopy, bus-based, write-invalidate MESI protocol (whose state-transition diagram is shown
above). Assume write-back, write-allocate caches.

(A) (4 points) Fill in the following table showing the bus transactions that result from each

access, and the states for L’s cache line after each access.

Access Shared bus transactions Alice’s cache Bob’s cache

Initial state L: I L: I

After Alice reads L BusRd L: E L: I

After Alice writes L L: M L: I

After Bob reads L BusRd, BusWB L: S L: S

After Bob writes L BusRdX L: I L: M

After Alice reads L BusRd, BusWB L: S L: S

After Alice writes L BusRdX L: M L: I

(B) (2 points) We are interested in minimizing the number of cache misses, i.e., accesses that

cannot be satisfied by the local cache and result in a bus transaction. In steady state (i.e., after
Alice and Bob have exchanged many messages), what is the hit rate of this sequence of
accesses? Consider every access that requires a bus transaction as a miss.

100 % misses in steady state (I->S for reads, and S->M for writes)

Hit Rate: ______0______

6.191 Spring 2023 - 15 of 19 - Quiz #3

(C) (2 points) Would using an MSI protocol (instead of MESI) improve hit rate? Briefly explain
why or why not.

 No, MSI would work the same way in steady state, as the E state is not used.

(D) (5 points) We add a self-invalidation instruction to the processor: inv <address>

invalidates the cache line containing <address>. If the line is dirty, it is written back to
main memory (through a BusWB transaction). Alice and Bob are modified to run inv L
after they write L.

 Fill in the diagram below, assuming that we use a MESI protocol. What is the hit rate of this

access sequence in steady state? (Consider only reads and writes as accesses; invs are not
accesses.)

Access Shared bus transactions Alice’s cache Bob’s cache

Initial state L: I L: I

After Alice reads L BusRd L: E L: I

After Alice writes L L: M L: I

After Alice invs L BusWB L: I L: I

After Bob reads L BusRd L: I L: E

After Bob writes L L: I L: M

After Bob invs L BusWB L: I L: I

Hit rate for access sequence in steady state: _____50_____ %

6.191 Spring 2023 - 16 of 19 - Quiz #3

(E) (3 points) This inv mechanism is too complicated for what we want to achieve–let’s keep it
simple. Write the state-transition diagram for a two-state coherence protocol that improves
hit rate over MESI for this access sequence. Name each of the two states, and include
transitions to cover all processor and bus actions in the protocol. The table below shows all
possible actions; you must support processor reads and writes, but need not use all possible
bus actions in your protocol.

 Your protocol should be write-invalidate, and work for write-back, write-allocate caches.

Using your protocol, what is the hit rate of our access sequence?

Hit rate for access sequence in steady state with your protocol: _____50_____ %

M

I

BusRdX / BusWB
PrRd / BusRdX
PrWr / BusRdX

PrRd / --
PrWr / --

6.191 Spring 2023 - 17 of 19 - Quiz #3

Problem 6: Loop Ordering and Caches (14 points)

Consider the following program:

int A[8][8];
int B[8][8];
int C[8][8][8];

for (int i = 0; i < 8; i++) {
 for (int j = 0; j < 8; j++) {
 for (int k = 0; k < 8; k++) {
 C[i][j][k] = A[i][j] + B[j][k];
 }
 }
}

Consider a three-way set associative cache with 4 sets. The block size is 4 words. This cache is
only used for data, and not for instructions. The cache is partitioned across the arrays so that
all accesses to array A map to way 0, array B map to way 1, and array C map to way 2 of
the cache. Recall that arrays are stored in row major order in memory. For array C this means
that the k elements of each C[i][j] are stored consecutively in memory, then come the next value
of j with its k elements, and so on.

(A) (2 points) In the inner “k” loop, how many different elements of each array are accessed?

Inner “k” loop:

for (int k = 0; k < 8; k++) {
 C[i][j][k] = A[i][j] + B[j][k];
}

 Elements of A: _____1_____

 Elements of B: _____8_____

 Elements of C: _____8_____

(B) (2 points) What fraction of the accesses to elements of C are cache misses for the entire

program?

Each access to C accesses a new element not seen before. C is traversed in row-by-row order,
so the next element of C accessed is directly adjacent in memory. This means that when a
block is brought in from memory from a miss on an access to C, it contains the next 3
elements to be accessed by C. Thus, only one in 4 accesses are a cache miss as after each
miss there will be 3 following hits.

Order of C[i,j,k] array in its cache for i = 0, j = 0 and j = 1:
C[0,0,0] … C[0,0,3]
C[0,0,4] … C[0,0,7]
C[0,1,0] … C[0,1,3]
C[0,1,4] … C[0,1,7]

 Miss Rate: ______1/4_______

6.191 Spring 2023 - 18 of 19 - Quiz #3

(C) (2 points) What fraction of the accesses to elements of B are cache misses for the entire
program?

B is accessed in row-by-row order, meaning all accesses are sequential in memory. Like array
C, when a block is brought in, it contains 4 elements, so only one in 4 accesses are cache
misses. Since only two rows of array B fit in the cache at a time, by the time the loop goes
back to j = 0, row 0 has been replaced and needs to be brought back into the cache.

Order of B[j,k] array in its cache for j = 0 and j = 1:
B[0,0] … B[0,3]
B[0,4] … B[0,7]
B[1,0] … B[1,3]
B[1,4] … B[1,7]

 Miss Rate: ______1/4______
_
(D) (2 points) What fraction of the accesses to elements of A are cache misses for the entire

program?

A is traversed in row-by-row order. The same element of A is accessed in the inner k loop 8
different times. It will not be kicked out of the cache, since it is accessed in every calculation
and will not be the LRU. Thus, once a block is brought in for A, the next three elements will
stick around for subsequent inner k loops. We only need one initial miss of an element of A
to cover hits for four inner k loops, or 32 total accesses to A.

Order of A[i][j] array in its cache for i = 0 and i = 1:
A[0,0] … A[0,3]
A[0,4] … A[0,7]
A[1,0] … A[1,3]
A[1,4] … A[1,7]

 Miss Rate: ______1/32______

Consider reordering the loops as follows (swapping the j and k loops):

for (int i = 0; i < 8; i++) {
 for (int k = 0; k < 8; k++) {
 for (int j = 0; j < 8; j++) {
 C[i][j][k] = A[i][j] + B[j][k];
 }
 }
}

Now answer the following questions with the same data cache as before.

(E) (2 points) What fraction of the accesses to elements of C are cache misses for the entire

program?

C is now traversed in column-by-column order. When C[i,0,0] is brought into cache so are
C[i,0,1-3]. However, now our inner loop is j, so next you will access C[i,1,0] which is not in
the cache. This will be brought into set 2. Then C[i,2,0] will be brought into set 0 and evict

6.191 Spring 2023 - 19 of 19 - Quiz #3

C[i,0,0], so by the time you get to k = 1, you have evicted C[i,0,1] from the cache. This
means that you don’t get to take advantage of the special locality and you miss every single
time.

 Miss Rate: ______1_______

(F) (2 points) What fraction of the accesses to elements of B are cache misses for the entire

program?

B is now traversed in column-by-column order. You first bring in B[0][0-3] into set 0. Next
you bring B[1][0-3] into set 2. By the time you get to B[2][0-3] you need to evict B[0][0-3]
so after you complete a whole column, you have evicted the low value of j so once again you
miss every time.

 Miss Rate: _____1_______

(G) (2 points) What fraction of the accesses to elements of A are cache misses for the entire

program?

A continues to be accessed in row-by-row order. You first bring A[0,0-3] into set 0, A[0,4-7]
into set 1. So out of the 8 values of the inner loop j, you miss twice and hit 6 times. For the
next 7 values of k you get all hits. So you have a miss rate of 2/64 or 1/32. Once you move
to the next value of i, the process repeats itself.

 Miss Rate: _____1/32_______

END OF QUIZ 3!

