
6.191 Fall 2024 - 1 of 23 - Quiz #3 Solutions

M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.191 Computation Structures
Fall 2024

Quiz #3

Name

Solutions
Athena login name

Score

Recitation section
o WF 10, 34-301 (Varun) o WF 2, 34-303 (Pleng) o WF 12, 34-303 (Ezra)
o WF 11, 34-301 (Varun) o WF 3, 34-303 (Pleng) o WF 1, 34-303 (Ezra)
o WF 12, 34-302 (Keshav) o WF 10, 34-302 (Hilary) o WF 2, 34-302 (Jessica)
o WF 1, 34-302 (Keshav) o WF 11, 34-302 (Hilary) o WF 3, 34-302 (Jessica)
 o opt-out

Please enter your name, Athena login name, and recitation section above. Enter your answers
in the spaces provided below. Show your work for potential partial credit. You can use the extra
white space and the back of each page for scratch work.

1 /16
2 /18
3 /18
4 /16
5 /19
6 /13

6.191 Fall 2024 - 2 of 23 - Quiz #3 Solutions

Problem 1. Operating Systems (16 points)

Consider the following two processes, A and B, running on a standard RISC-V processor. Code
listings use virtual addresses.

Program for process A Program for process B
. = 0x10
 .ascii “Process A: 1\n”
. = 0x150
 .ascii “Process A: 2\n”

. = 0x200
loopA:
 li a0, 0x10
 li a7, 0x1B
 ecall
 li a0, 0x150
 li a7, 0x1B
 ecall
 j loopA

. = 0x0
 .ascii “Process B: 1\n”
. = 0x200
 .ascii “Process B: 2\n”

. = 0x600
loopB:
 li a0, 0x0
 li a7, 0x1B
 ecall
 li a0, 0x200
 li a7, 0x1B
 ecall
 li t0, 0x790
 sw a0, 0(t0)
 j loopB

These processes run on a custom OS that supports segmentation-based (base and bound) virtual
memory, timer interrupts for scheduling processes, and a print_string system call for printing
strings.

Processes invoke syscalls with the ecall instruction. The print_string system call takes the
address of a string to print as the argument in register a0, and syscall number 0x1B in register a7.
It returns the length of the string that was printed. Note that the length of all of the strings
is 13.

Assume virtual addresses are translated with the following base and bound registers:
Process A: base register = 0x100, bound register = 0x180
Process B: base register = 0x700, bound register = 0x1000

(A) (2 points) What is the physical address of the start of the string located at 0x10 in Process A
and the start of the string located at 0x200 in Process B?

 Physical Address of string at 0x10 in Process A: _____0x110_______

 Physical Address of string at 0x200 in Process B: _____0x900_______

6.191 Fall 2024 - 3 of 23 - Quiz #3 Solutions

(B) (3 points) While running the two processes, you notice that one of the processes crashes due
to a segmentation fault.

Which process has a segmentation fault? Circle one: Process A / Process B

Which instruction causes the segmentation fault? ______li a0, 0x10_________

(C) (2 points) Assume that all segmentation faults have been fixed. You decide to test only

Process A first to see if it behaves as expected, and get the following incorrect output, where
“Process A: 1” is printed repeatedly.

Process A: 1
Process A: 1
Process A: 1
…

You isolate the issue to the handling of the exception specified by the mcause register. What
bug in the code that handles this exception is causing the incorrect behavior?

The exception handler is not setting the current process’ pc correctly, so when the common
handler returns after ecall, the pc is set to 0x200. This reloads a0, and then makes the ecall
again.

ANOTHER ACCEPTED SOLUTION: The exception handler is not incrementing the current
process’ pc by 4. This makes it so that when the common handler returns after ecall, the pc is
set to the pc of the first ecall instruction, so the ecall gets executed repeatedly.

The above solution is actually incorrect because when print_string returns, it puts 13 into a0.
So, if the ecall gets executed again, it actually would not exhibit the behavior shown in the
problem. We still accepted that solution as valid since that was the intent of the problem.

(D) (3 points) Assume that all issues have been fixed and the processes behave as expected. Say

that Process A was scheduled first, and runs until the first ecall instruction completes and
returns from the common handler. What are the values in the a0, a7, and pc (in virtual
address) registers? Write CAN’T TELL if you can’t tell a value from the information given.

a0: _________13_____________

a7: _________0x1B___________

pc: ________0x20C___________

Process that OS returns control to after the ecall: ______Process A__________

6.191 Fall 2024 - 4 of 23 - Quiz #3 Solutions

(E) (3 points) Still assume that all issues have been fixed. You run both processes and get the
following output:

Process A: 1
Process B: 1
Process B: 2
Process A: 2

You pause the program immediately after the last line finishes printing and returns from the
common handler. What are the values in the a0, t0, and pc (in virtual address) registers?
Write CAN’T TELL if you can’t tell a value from the information given.

a0: _________13_____________

t0: ____CAN’T TELL________

pc: _______0x218____________

(F) (3 points) Still assume that all issues have been fixed. Process A and B are now run until 4
lines are printed. For the following outputs, specify if that output could have been produced
by our programs or not.

Outputs:
Process B: 1
Process A: 1
Process B: 2
Process B: 1

Process A: 1
Process A: 2
Process A: 1
Process B: 1

Process A: 1
Process B: 2
Process B: 1
Process A: 2

Circle One:

Possible / Not Possible

Circle One:

Possible / Not Possible

Circle One:

Possible / Not Possible

The first output is possible if B is scheduled first. The second output is possible if A is scheduled
first and goes through one and half iterations of the loop before a timer interrupt. The second
output is not possible because ‘Process B: 2’ is printed before ‘Process B: 1’.

6.191 Fall 2024 - 5 of 23 - Quiz #3 Solutions

Problem 2. Virtual Memory (18 points)

Consider a RISC-V processor that has 16-bit virtual addresses, 2!" bytes of physical memory,
and uses a page size of 2#! bytes.

(A) (2 points) Calculate the following parameters relating to the size of the page table assuming a

single-level (flat) page table. Each page table entry contains a physical page number, a dirty
bit, and a resident bit. Your final answer can be a product or exponent.

Number of entries in the page table: ____𝟐𝟒______

Size of page table entry (in bits): ____10______

Size of the page table (in bits): ___10*𝟐𝟒____

(B) (1 point) Instead of using a page size of 2#! bytes, say we decide to use a page size of 2%

bytes. What is the ratio of the page table sizes with the new page size of 2% bytes, compared
to the old page size of 2#! bytes? Your final answer can use fractions, products, and
exponents.

Ratio of page table sizes: ____(𝟐𝟖 ∗ 𝟏𝟒)/(10*𝟐𝟒)_____

For the rest of the problem, keep the page size as 𝟐𝟏𝟐 bytes, and assume a hierarchical page
table structure of 2 levels, with address mapping as shown below:

VPN Page Offset
1st level index 2nd level index Page Offset

It is given to you that the number of bits in the 1st and 2nd level indices are equal.

(C) (2 points) Calculate the following parameters relating to the size of each second-level page

table. Each second-level page table entry contains a physical page number, a dirty bit, and a
resident bit. Your final answer can be a product or exponent.

Number of entries in each 2nd level page table: ______22_______

Size of 2nd level page table entry (in bits): ______10_______

(D) (8 points) You now run a test program on this processor. Execution of this test program is

halted just before executing the following two instructions. The state of the hierarchical page
table is shown below; the least recently used page (“LRU”) and next least recently used page
(“next LRU”) are indicated where necessary. x1 has been set to 0x9000. Assume all
physical pages are in use. Execution resumes and the following two instructions are
executed:

. = 0xBFFC
lw x12, 0xF(x0)
sw x12, 0x0(x1) // x1 = 0x9000

6.191 Fall 2024 - 6 of 23 - Quiz #3 Solutions

For each virtual address accessed, please indicate, in the chart below, the virtual address, the
VPN, whether the access results in a page fault, the PPN, and the physical address. If there is
not enough information given to determine a given value, please write N/A. Please write all
numerical values in hexadecimal. Assume that we use an LRU replacement policy on the
2nd level of Page Tables.

Virtual Address VPN Page Fault

(Yes/No)
PPN Physical Address

0xBFFC 0xB No 0x21 0x21FFC

0xF 0x0 Yes 0xA3 0xA300F

0xC000 0xC No 0x2F 0x2F000

0x9000 0x9 Yes 0xFF 0xFF000

(E) (2 points) Also, specify which PPN(s) were evicted, and which were written back to memory

during execution of the two instructions from part (D). If there are no pages to list, then enter
NONE.

Evicted PPN(s) (hex): _____0xA3, 0xFF_______

Written back PPN(s) (hex): _________0xFF_______

6.191 Fall 2024 - 7 of 23 - Quiz #3 Solutions

(F) (3 points) Consider the same RISC-V processor. We add a 4-element, fully-associative
Translation Lookaside Buffer (TLB) with an LRU replacement policy. A program running on
the processor is halted right before executing the following instruction located at address
0xB2A0. x4 has been set to 0x9204:

. = 0xB2A0
sw x3, 4(x4) // x4 = 0x9204

The contents of the TLB and the hierarchical page table are shown below. Assume that all
physical pages are currently in use. Assume that we use an LRU replacement policy on the
2nd level of Page Tables.

Fill out the updated state of the TLB after these operations. You may mark a row as “NO
CHANGE” if it remains unchanged. Please write all numerical values in hexadecimal.

 TLB
 VPN V R D PPN

 LRU ® 0x1 1 1 1 0x0
 0x9 1 1 0 0xB
 0x8 1 1 0 0x4
 0x0 0 0 0 0x99

 TLB
 VPN V R D PPN
 0xB 1 1 0 0xD
 0x9 1 1 1 0xB
 NO CHANGE
 NO CHANGE

6.191 Fall 2024 - 8 of 23 - Quiz #3 Solutions

Problem 3. Exceptions (18 points)

We are trying to run the following piece of code. Unfortunately, our processor does not
implement the divide instruction. Instead, we choose to emulate the instruction within the
operating system.

. = 0x000
addi a0, x0, 0x1
addi a1, x0, 0x1
bnez a1, second

first:
div a2, a1, a0
addi a3, x0, 0x1

second:
div a2, a1, a0
add x0, x0, x0
add x0, x0, x0
add x0, x0, x0
…

// Kernel space
common_handler:
 csrw mscratch, x1
 lw x1, curProc
 sw x2, 0x8(x1)
 sw x3, 0xc(x1)

sw x4, 0x10(x1)
sw x5, 0x14(x1)
sw x6, 0x18(x1)

 …

Note that the division instruction exception is detected in the decode stage.

(A) (4 points) Fill in all the white boxes in the 5-stage pipeline diagram for the execution of this

code. Assume branches are resolved in the execute stage, and there is full bypassing.
Assume that exceptions are handled lazily (at the commit point). You do not need to
include bypassing arrows.

Cycle 0 1 2 3 4 5 6 7 8 9

IF addi addi bnez div addi div add add add csrw

DEC addi addi bnez div NOP div add add NOP

EXE addi addi bnez NOP NOP div add NOP

MEM addi addi bnez NOP NOP div NOP

WB addi addi bnez NOP NOP NOP

6.191 Fall 2024 - 9 of 23 - Quiz #3 Solutions

(B) (4 points) Fill this diagram out again, but now assume that we handle exceptions
immediately, as soon as they are detected. You do not need to include bypassing arrows.

Cycle 0 1 2 3 4 5 6 7 8 9

IF addi addi bnez div addi div add csrw lw sw

DEC addi addi bnez div NOP div NOP csrw lw

EXE addi addi bnez NOP NOP NOP NOP csrw

MEM addi addi bnez NOP NOP NOP NOP

WB addi addi bnez NOP NOP NOP

(C) (2 points) Suppose Alice is writing a program. Alice forgets about the ecall instruction and

instead uses the jump instruction to call the common handler directly, instead of using the
ecall.

example_program:
 li a0, 32
 li a1, 10
 li a7, SYS_SEMINIT

j common_handler

common_handler:
 // Save all the registers into the curProc data structure
 csrw mscratch, x1
 ...

 // Setup the necessary registers to call the dispatcher
 // Call the dispatcher
 // Load all the registers from the curProc data structure
 // Return to the calling process
 mret

Will this work as intended (circle one)? YES NO

Why or why not?

No, the ecall instruction switches us to kernel mode which gives us access to priviliged
registers as well as the kernell code. It also saves the pc into the mepc so that mret can
properly return to the correct location in the user program.

6.191 Fall 2024 - 10 of 23 - Quiz #3 Solutions

(D) (8 points) We are running the following piece of code. Determine which lines of code can be
executing at the time each possible exception or interrupt happens. If there are fewer than 3
locations where the exception/interrupt can occur, please list out their PCs (e.g., 0x4). If
there are 3 or more locations, then write “MANY PCs.” If no PCs can be executing, write
“NONE”.

Assume:

• The page table initially has allocated one page for VPN 0x0.
• Each page is 212 bytes
• Page faults are handled by the OS
• None of these instructions cause a segmentation fault.
• If the process encounters a division by zero, it is immediately killed by the OS.
• Division instruction is implemented in hardware.

PC Instruction
0x00 lui a1, 1 // a1 = 0x1000
0x04 lui a2, 5 // a2 = 0x5000
0x08 lw a4, 0x40(a1)
0x0c lw a5, 0x0(a1)
0x10 lw a6, 0x0(a2)
0x14 li a0, 0
0x18 li a7, SYS_PUTCHAR
0x1c ecall
0x20 add a0, x0, x0
0x24 div a2, a2, a0

Interrupt/Exception Type Current Executing Instructions

Page fault 0x08, 0x10

Timer interrupt MANY PCs

System call 0x1c

Division by zero 0x24

Illegal opcode NONE

6.191 Fall 2024 - 11 of 23 - Quiz #3 Solutions

Problem 4. Synchronized Space Shenanigans (16 points)

The Earth Space Research Organization (ESRO) has decided to launch a rocket to provide
supplies to the astronauts living in the World Space Station (WSS). ESRO has equipped the
rocket with five boosters.

All boosters run the same code. Each booster must complete a set of pre-launch checks. Each
booster can independently run the pre-launch checks. Finally, the boosters must ignite only
after all five boosters have completed the pre-launch checks. Each booster must call ignite
for itself.

Engineers at ESRO have written the following code to help ignite the boosters:

Shared Memory:

int num_ready_boosters = 0;

booster_code:

 prelaunch_check()

 num_ready_boosters = num_ready_boosters + 1

 if(num_ready_boosters == 5) {

 ignite()
 }

(A) (4 points) Using the booster code given above, answer if the following conditions are

possible:

1. None of the boosters ever ignite.

Possible / Not Possible

2. All boosters ignite after all five boosters have completed the pre-launch checks and
None of the boosters ignite before all five boosters have completed the pre-launch
checks.

 Possible / Not Possible

3. A booster ignites before all five boosters have completed the pre-launch checks.

 Possible / Not Possible

4. What synchronization issue exists in the above code?

 Race Condition / Deadlock / Both

6.191 Fall 2024 - 12 of 23 - Quiz #3 Solutions

(B) (12 points) You notice that the above booster code can fail. To avoid a failed launch you
decide to help out the ESRO engineers by correcting the booster code to meet the following
requirements:
• Each booster can run pre-launch checks concurrently with other boosters.
• None of the boosters should ignite until all five boosters have completed pre-launch

checks.
• After all boosters have completed pre-launch checks, all boosters must ignite.
• You can use at most 2 semaphores to complete the code, and you cannot initialize your

semaphores to negative values.
• There should be no race conditions or deadlocks in your code.
• You should not introduce any extra constraints.
• You may only add semaphore declaration and initialization in shared memory, and

wait(sem) and signal(sem) instructions in the booster code.

Complete the code below. Notice that the ignite() function is now outside the if condition.
Hint: Think carefully about how the if statement affects the semaphore values.

Shared Memory:

int num_ready_boosters = 0;
semaphore lock = 1
semaphore barrier = 0
booster_code:

 prelaunch_check()

 wait(lock)

 num_ready_boosters = num_ready_boosters + 1

 signal(lock)

 if(num_ready_boosters == 5) {

 signal(barrier)

 }
 wait(barrier)

 signal(barrier)

 ignite()

Since num_ready_boosters is a shared variable that is being read from and written to by multiple
boosters, there is a race condition. Hence, we put a lock around “num_ready_boosters =
num_ready_boosters + 1” to prevent race conditions. .

Since none of the boosters can ignite before all boosters have completed the pre-launch checks,
we have a precedence constraint. Anything inside the if block precedes the ignite call. Hence,
using our recipe we add a wait(barrier) before the ignite(call) and a signal(barrier) inside the if
condition.

6.191 Fall 2024 - 13 of 23 - Quiz #3 Solutions

Notice here that this signal(barrier) signals just one waiting booster to proceed and only one of
the boosters can move forward with ignite(). The other boosters are still waiting! Hence, the
booster that is able to proceed and call ignite() has to signal to another booster that it can ignite!
Therefore we need the signal(barrier) just before ignite().

This leads to a cascade of signal(barrier) calls between the boosters. This common
synchronization pattern goes by the name of a non-reusable barrier or non-reusable turnstile.

If you are interested in learning more synchronization patterns, refer to “The Little Book of
Semaphores”: https://greenteapress.com/wp/semaphores/

Alternate solution:

Shared Memory:

int num_ready_boosters = 0;
semaphore lock = 1
semaphore barrier = 0
booster_code:

 prelaunch_check()

 wait(lock)

 num_ready_boosters = num_ready_boosters + 1

 signal(lock)

 if(num_ready_boosters == 5) {

 signal(barrier)
 signal(barrier)
 signal(barrier)
 signal(barrier)
 signal(barrier)

 }

 wait(barrier)

 ignite()

In the first solution, we added a signal(barrier) call just before ignite() to make sure all 5 boosters
eventually ignite(). An alternative way of ensuring all 5 boosters ignite is to call signal(barrier)
five times once the if condition is satisfied!

https://greenteapress.com/wp/semaphores/

6.191 Fall 2024 - 14 of 23 - Quiz #3 Solutions

Problem 5. Cache Coherence (19 points)

Ben Bitdiddle has a four-core processor system, where each core has its own cache. Ben has the
option to use either a snoopy-based, write invalidate MSI or a snoopy-based, write invalidate
MESI protocol, and is trying to decide which is better for optimizing the following code where
S1 and S2 are semaphores initialized to 0. Assume that X and Y map to different lines of the
cache.

Core A runs:
proc1:
 lw a1, X
 add a1, a1, a0
 sw a1, Y
 signal(S1)
 signal(S1)
 signal(S1)
 wait(S2)
 wait(S2)
 wait(S2)
 lw a1, Y
 sw a1, X

Core B runs:
proc2:
 wait(S1)
 lw a1, Y
 add a1, a1, a0
 sw a1, Y
 signal(S2)

Core C runs:
proc2:
 wait(S1)
 lw a1, Y
 add a1, a1, a0
 sw a1, Y
 signal(S2)

Core D runs:
proc2:
 wait(S1)
 lw a1, Y
 add a1, a1, a0
 sw a1, Y
 signal(S2)

6.191 Fall 2024 - 15 of 23 - Quiz #3 Solutions

Ben decides to first observe how MSI and MESI perform when run on a subset of the processes.
He modifies proc1 to only perform 1 signal(S1) and 1 wait(S2) and then runs just Core A
and Core B.

Core A runs:
proc1:
 lw a1, X
 add a1, a1, a0
 sw a1, Y
 signal(S1)
 wait(S2)
 lw a1, Y
 sw a1, X

Core B runs:
proc2:
 wait(S1)
 lw a1, Y
 add a1, a1, a0
 sw a1, Y
 signal(S2)

The semaphores guarantee that data accesses proceed in the following order. The table is given
for your convenience and will not be graded.

Access Shared Bus Transactions Cache A Cache B

Initial state X: I Y: I X: I Y: I

A: lw a1, X A: BusRd(X) X: S/E Y: X: Y:

A: sw a1, Y A: BusRdX(Y) X: S/E Y: M X: Y:

B: lw a1, Y B: BusRd(Y)->
A: BusWB(Y)

X: S/E Y: S X: Y: S

B: sw a1, Y B: BusRdX(Y) X: S/E Y: I X: Y: M

A: lw a1, Y A: BusRd(Y)->
B: BusWB(Y)

X: S/E Y: S X: Y: S

A: sw a1, X A: BusRdX(X)/None X: M Y: S X: Y: S

(A) (4 points) For each protocol, how many of each of the following bus requests occur for the

series of accesses listed above?

Protocol # of BusRd # of BusRdX # of BusWB

MSI 3 3 2

MESI 3 2 2

6.191 Fall 2024 - 16 of 23 - Quiz #3 Solutions

(B) (1 point) Assuming that instructions always interleave in the same order, when switching
from a MSI protocol to a MESI protocol, which of the following # of bus requests could
decrease?

of BusRd: Could decrease Stays the same

of BusRdX: Could decrease Stays the same

of BusWB: Could decrease Stays the same

After observing how his code performs on MSI and MESI with just 2 cores, he thinks he has
enough information to decide which is better for his 4 core system.

(C) (2 points) Ben’s MESI protocol takes 10ns longer than his MSI protocol per cache access.

Suppose all bus transactions(BusRd, BusRdX, BusWB) take an additional 80ns if they are
called. For Ben’s system that has a total of 10 data accesses(1 lw X, 1 sw X, 4 lw Y, 4 sw
Y), how many bus transactions need to be saved for the MESI protocol to take less total time
than the MSI protocol?

B = num bus transactions with MESI
B + N = num bus transactions for MSI
10 * 10 + 80 B < 80 (N + B)
100 < 80N
N > 1.25 = 2

Minimum number of saved bus transactions: ________2_________

(D) (1 point) What is the maximum number of bus transactions that would be saved if Ben uses

the MESI protocol over the MSI protocol? (Hint: pay close attention to what the semaphores
guarantee about data access order)

Maximim number of saved bus transactions using Ben’s code: ________1_________

(E) (1 point) Should Ben use his MSI or MESI protocol (circle one)?

MSI MESI

6.191 Fall 2024 - 17 of 23 - Quiz #3 Solutions

(F) (10 points) Suppose Ben’s program interleaves data accesses in the following order:

Core A Core B Core C Core D

(1) lw a1, X
(2) sw a1, Y
(9) lw a1, Y
(10) sw a1, X

(4) lw a1, Y
(5) sw a1, Y

(3) lw a1, Y
(7) sw a1, Y

(6) lw a1, Y
(8) sw a1, Y

Fill in the following table using the protocol you selected in part E (this table WILL be
graded). Include all shared bus transactions. Include the address associated with each bus
transaction (e.g., BusRdX(Y)). If no bus transactions occur, write N/A in the corresponding
box. Cache states left blank will be assumed to be Invalid.

Access Shared Bus Transactions Cache A Cache B Cache C Cache D

Initial state X: I Y: I X: I Y: I X: I Y: I X: I Y: I

A: lw a1, X A: BusRd(X) X:S Y: X: Y: X: Y: X: Y:

A: sw a1, Y A: BusRdX(Y) X:S Y:M X: Y: X: Y: X: Y:

C: lw a1, Y C: BusRd(Y)->
A: BusWB(Y) X:S Y: S X: Y: X: Y: S X: Y:

B: lw a1, Y B: BusRd(Y) X:S Y: S X: Y: S X: Y: S X: Y:

B: sw a1, Y B: BusRdX(Y) X:S Y: I X: Y:M X: Y: I X: Y:

D: lw a1, Y D: BusRd(Y)->
B: BusWB(Y) X:S Y: I X: Y: S X: Y: I X: Y: S

C: sw a1, Y C: BusRdX(Y) X:S Y: I X: Y: I X: Y:M X: Y: I

D: sw a1, Y D: BusRdX(Y)->
C: BusWB(Y) X:S Y: I X: Y: I X: Y: I X: Y:M

A: lw a1, Y A: BusRd(Y)->
D: BusWB(Y) X:S Y: S X: Y: I X: Y: I X: Y: S

A: sw a1, X A: BusRdX(X) X:M Y: S X: Y: I X: Y: I X: Y: S

6.191 Fall 2024 - 18 of 23 - Quiz #3 Solutions

Problem 6. Cache Me If You Can (13 points)

Oh no, Didit is broken! The 6.004 TAs are scrambling to put together a grading script that
calculates student grades so that they can get class grades submitted before the deadline.

The student grades are stored in an array int G[S][N] such that S is the number of students in
the class, N is the total number of assignments in the class and G[s][n] corresponds to the grade
obtained by student number s on assignment number n.

Additionally, there’s an array called int W[N] which stores the per-assignment weights. The
TAs want to calculate the total score of the class in a register variable called sum. All the arrays
are stored in row-major configuration.

(A) (2 points) A couple of TAs suggest the following two versions of the script:

Which version has better data locality? Why?

Version with better Data Locality (circle): A B

Explanation:

When arrays are stored in row-major configuration that means that they are stored row per
row so cells in adjacent columns are adjacent in memory. When we bring a new line into the
cache, it corresponds to one row and multiple columns. This means that we want our
innermost loop to iterate over columns so that each access of the inner loop (after the first
which brings the line into the cache) is a hit.

Version A:
void grade() {
 int sum = 0;
 for (int n = 0; n < N; n++)
 for (int s = 0; s < S; s++)
 sum += W[n] * G[s][n];
}

Version B:
void grade() {
 int sum = 0;
 for (int s = 0; s < S; s++)
 for (int n = 0; n < N; n++)
 sum += W[n] * G[s][n];
}

6.191 Fall 2024 - 19 of 23 - Quiz #3 Solutions

The program runs on a CPU with separate instruction and data caches. For this problem, assume
that instructions, W, and G arrays reside in three different caches respectively, and we want to
analyze the data misses on the W array. The W array cache is a fully associative cache with 4
words per block, with LRU eviction policy. Assume that we run Version B of the code and that
there are 64 students in the class (S = 64) and 16 assignments (N = 16). The table below shows
the number of data misses on the W array for different cache sizes.

Cache diagrams and code are available on the following pages for assistance and scratch work.

(B) (3 points) Why does increasing the cache size slightly have such a large improvement in the

number of misses on the W array? Briefly explain.

Explanation:
In order to store the entire weights array in the weights cache, we need four cache lines (say
CL0, CL1, CL2 and CL3). Since the 12-word cache only has capacity for three cache lines,
every cache line CLi that is brought into the cache evicts CL[(i+1) % 4].

In the second scenario, i.e. the 16-word cache, there are four cache lines, so once the entire W
array is brought into the cache after 4 misses (resulting from the first time each line is brought
into the cache), there are no more misses and the entire array now resides in the cache.

(C) (4 points) Unfortunately, the TAs will be unable to get more cache in time for the deadline.

Help the TAs tile Version B of the code with a tile size of T. Assume that S and N are
divisible by T. Your goal is to minimize the number of misses on W, and you can only tile
either S or N. Which one should you tile on? Complete the code below showing a tiled
implementation of the code.

W Array Cache Size
words (lines x words/line) Data misses on W

12 (3 x 4) 256
16 (4 x 4) 4

Version C:
void grade() {
 int sum = 0;

 for (int n = 0; n < N; n += T)

 for (int s = 0; s < S; s++)

 for (int nn = 0; nn < T; nn++)

 sum += W[n + nn] * G[s][n + nn]
}

6.191 Fall 2024 - 20 of 23 - Quiz #3 Solutions

(D) (4 points) Calculate the total number of data-misses on the W array using your tiled code from
part C. Assume the tiling factor T = 4 and that you are using the 12 word (3 x 4) cache.

Cache diagrams and code are available on the following pages for assistance and scratch
work.

Data misses on the W array: ________4_________

With a tile size of 4, only 4 elements of array W are accessed at a time and they all fit in one
line of the cache. Bringing this line into the cache incurs one data miss. The 4 elements of
W are accessed by the two inner loops without having to evict any line of W’s cache. So for
every S*4 accesses, there is 1 data miss. Once we get to the next iteration of the outermost
loop, we need to bring in another line of W into the cache, and the same pattern repeats where
we have a total of S*4 accesses with a single data miss. In total, we have 4 data misses, one
per line of W.

6.191 Fall 2024 - 21 of 23 - Quiz #3 Solutions

W array cache diagrams for fully associative caches with 12 words, 4 words per block (not
graded):

Tag Word 3 Word 2 Word 1 Word 0

 W[] W[] W[] W[]
 W[] W[] W[] W[]
 W[] W[] W[] W[]

Extra Copies:

Tag Word 3 Word 2 Word 1 Word 0
 W[] W[] W[] W[]
 W[] W[] W[] W[]
 W[] W[] W[] W[]

Tag Word 3 Word 2 Word 1 Word 0

 W[] W[] W[] W[]
 W[] W[] W[] W[]
 W[] W[] W[] W[]

Tag Word 3 Word 2 Word 1 Word 0

 W[] W[] W[] W[]
 W[] W[] W[] W[]
 W[] W[] W[] W[]

Tag Word 3 Word 2 Word 1 Word 0

 W[] W[] W[] W[]
 W[] W[] W[] W[]
 W[] W[] W[] W[]

Tag Word 3 Word 2 Word 1 Word 0

 W[] W[] W[] W[]
 W[] W[] W[] W[]
 W[] W[] W[] W[]

Version B:
void grade() { // S = 64, N = 16
 int sum = 0;
 for (int s = 0; s < S; s++)
 for (int n = 0; n < N; n++)
 sum += W[n] * G[s][n];
}

6.191 Fall 2024 - 22 of 23 - Quiz #3 Solutions

W array cache diagrams for fully associative caches with 16 words, 4 words per block (not
graded):

Tag Word 3 Word 2 Word 1 Word 0

 W[] W[] W[] W[]
 W[] W[] W[] W[]
 W[] W[] W[] W[]
 W[] W[] W[] W[]

Extra Copies:

Tag Word 3 Word 2 Word 1 Word 0
 W[] W[] W[] W[]
 W[] W[] W[] W[]
 W[] W[] W[] W[]
 W[] W[] W[] W[]

Tag Word 3 Word 2 Word 1 Word 0

 W[] W[] W[] W[]
 W[] W[] W[] W[]
 W[] W[] W[] W[]
 W[] W[] W[] W[]

Tag Word 3 Word 2 Word 1 Word 0

 W[] W[] W[] W[]
 W[] W[] W[] W[]
 W[] W[] W[] W[]
 W[] W[] W[] W[]

Tag Word 3 Word 2 Word 1 Word 0

 W[] W[] W[] W[]
 W[] W[] W[] W[]
 W[] W[] W[] W[]
 W[] W[] W[] W[]

Version B:
void grade() { // S = 64, N = 16
 int sum = 0;
 for (int s = 0; s < S; s++)
 for (int n = 0; n < N; n++)
 sum += W[n] * G[s][n];
}

6.191 Fall 2024 - 23 of 23 - Quiz #3 Solutions

W array cache diagrams for fully associative caches with 12 words, 4 words per block, and
a tile size of 4. (not graded):

Tag Word 3 Word 2 Word 1 Word 0

 W[] W[] W[] W[]
 W[] W[] W[] W[]
 W[] W[] W[] W[]

Extra Copies:

Tag Word 3 Word 2 Word 1 Word 0
 W[] W[] W[] W[]
 W[] W[] W[] W[]
 W[] W[] W[] W[]

Tag Word 3 Word 2 Word 1 Word 0

 W[] W[] W[] W[]
 W[] W[] W[] W[]
 W[] W[] W[] W[]

Tag Word 3 Word 2 Word 1 Word 0

 W[] W[] W[] W[]
 W[] W[] W[] W[]
 W[] W[] W[] W[]

Tag Word 3 Word 2 Word 1 Word 0

 W[] W[] W[] W[]
 W[] W[] W[] W[]
 W[] W[] W[] W[]

END OF QUIZ 3!

Version C:
void grade() { // S = 64, N = 16, T = 4
 int sum = 0;
 for ()
 for ()
 for ()
 sum +=
}

