
6.191 Fall 2024 - 1 of 20 - Quiz #2

M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.191 Computation Structures
Fall 2024

Quiz #2

Name

Solutions
Athena login name

Score

Recitation section
o WF 10, 34-301 (Varun) o WF 2, 34-303 (Pleng) o WF 12, 34-303 (Ezra)
o WF 11, 34-301 (Varun) o WF 3, 34-303 (Pleng) o WF 1, 34-303 (Ezra)
o WF 12, 34-302 (Keshav) o WF 10, 34-302 (Hilary) o WF 2, 34-302 (Jessica)
o WF 1, 34-302 (Keshav) o WF 11, 34-302 (Hilary) o WF 3, 34-302 (Jessica)
 o opt-out

Please enter your name, Athena login name, and recitation section above. Enter your answers
in the spaces provided below. Show your work for potential partial credit. You can use the extra
white space and the back of each page for scratch work.

1 /16
2 /16
3 /16
4 /16
5 /18
6 /18

6.191 Fall 2024 - 2 of 20 - Quiz #2

Problem 1. Sequential Circuits in Minispec (16 points)

Madeline has two modules Source and Sink she is trying to link together. Their interfaces are:

module Source;
 method Maybe#(Bit#(1)) out;
endmodule
module Sink;
 input Maybe#(Bit#(1)) in default = Invalid;
endmodule

There’s a problem: Source internally interprets data in groups of 4 bits (a “nibble”). For
example, to output 0x70 followed by 0x8F, Source would put 0111 0000 1000 1111 on the
output wire, in chronological order from left to right. Meanwhile, Sink reverses the bits in each
nibble when it interprets the data. To express the same sequence—0x70 followed by 0x8F, Sink
must receive 1110 0000 0001 1111 in chronological order from left to right. Therefore, Madeline
needs to add extra logic to reverse each nibble from Source before putting it into Sink. She
decides to create a new module called Reverser, which has this interface:

module Reverser;
 input Maybe#(Bit#(1)) in default = Invalid;
 method Maybe#(Bit#(1)) out;
endmodule

This allows Madeline to specify the connection from Source to Sink by chaining them through
Reverser in the middle:

module TopLevel;
 Source source;
 Sink sink;
 Reverser reverser;
 rule connect;
 reverser.in = source.out;
 sink.in = reverser.out;
 endrule
endmodule

Note Source may not provide an input on some of the cycles (i.e. provides Invalid), in which
case, the reverser has to wait until it receives the full nibble. The Invalid gaps are not
semantically significant. The reverser can output the reversed nibble without any Invalid gaps.

6.191 Fall 2024 - 3 of 20 - Quiz #2

Madeline’s partially-completed code for Reverser is on the next page. The design is as follows:
• There are two 4-bit buffers, named sendBuf and recvBuf. sendBuf can be Invalid.
• There are two 2-bit counters, sendIdx and recvIdx, to count how many bits have been

sent and received.
• If in is valid, then the data bit is shifted-left into recvBuf, becoming the rightmost

(least-significant) bit (as shown in the table of part A). When recvBuf becomes full
(recognized through recvIdx), it is moved to sendBuf.

o Copying in the same clock cycle is important to maintain the throughput and
ensure latency is exactly 4 cycles (assuming no Invalid gaps in the inputs).

o It doesn’t matter what recvBuf becomes at this point, so the code does the same
thing as usual to keep the circuit simple (It shifts-left the input).

• On each cycle, if sendBuf is valid, the rightmost bit is output through a method and
shifted out. If all bits have been shifted out, then sendBuf is reset to Invalid, unless
there is data to be copied from recvBuf in the same clock cycle.

o Notice that the buffers are used somewhat like a stack, so the nibble gets
transmitted in reverse order as intended!

The following is the (vertical) pipeline diagram of Madeline’s module. The pipeline diagram has
been filled in for the first 6 cycles. Valid and Invalid have been abbreviated as V and Inv
respectively. This specifies the expected behavior of Madeline’s module. Note recvBuf was
initialized to a don’t-care value due to the use of RegU type; assume it is initialized to 4'b1111.

(A) (6 points) What are the values on cycle 9 and 11? Fill the table where indicated. The rest of

the table will not be graded; it can be used for scratch work.

Cycle in recvBuf recvIdx sendBuf sendIdx out

0 V(0) 4'b1111 0 Inv 0 Inv

1 V(1) 4'b1110 1 Inv 0 Inv

2 Inv 4'b1101 2 Inv 0 Inv

3 V(1) 4'b1101 2 Inv 0 Inv

4 V(1) 4'b1011 3 Inv 0 Inv

5 V(0) 4'b0111 0 V(4'b0111) 0 V(1)

6 V(1) 4'b1110 1 V(4'b0011) 1 V(1)

7 V(0) 4'b1101 2 V(4'b0001) 2 V(1)

8 Inv 4'b1010 3 V(4'b0000) 3 V(0)

9 V(0) 4'b1010 3 Inv 0 Inv

10 V(1) 4'b0100 0 V(4'b0100) 0 V(0)

11 V(1) 4'b1001 1 V(4'b0010) 1 V(0)

6.191 Fall 2024 - 4 of 20 - Quiz #2

(B) (10 points) Implement the out method, and fill in the blanks in the rule so the code
correctly implements the desired behavior.

module Reverser;
 Reg#(Maybe#(Bit#(4))) sendBuf(Invalid);
 RegU#(Bit#(4)) recvBuf;
 Reg#(Bit#(2)) sendIdx(0);
 Reg#(Bit#(2)) recvIdx(0);
 input Maybe#(Bit#(1)) in default = Invalid;
 // return bit 0 of sendBuf if valid
 method Maybe#(Bit#(1)) out;
 // TODO: implement this method

 return isValid(sendBuf) ? Valid(fromMaybe(?, sendBuf)[0]) : Invalid;

 endmethod
 rule connect;
 let nSendBuf = sendBuf;
 if (isValid(sendBuf)) begin
 sendIdx <= sendIdx+1;
 // shift out the sent bit, or mark invalid if all 4 bits done

 Bit#(4) sendBuf_v = ____ fromMaybe(?, sendBuf)__;

 nSendBuf = ___sendIdx == 3_ ? ___ Invalid__ : Valid(sendBuf_v>>1);
 end
 let nRecvBuf = recvBuf;
 // shift-left a bit into the receive buffer
 if (isValid(in)) begin
 recvIdx <= recvIdx+1;

 nRecvBuf = {___ nRecvBuf[2:0]____, ____ fromMaybe(?, in)___};
 // copy to sendBuf immediately if received all 4 bits

 if (recvIdx == __3__) nSendBuf = __ Valid(nRecvBuf)__;
 end
 sendBuf <= nSendBuf;
 recvBuf <= nRecvBuf;
 endrule
endmodule

6.191 Fall 2024 - 5 of 20 - Quiz #2

Problem 2. Arithmetic Pipelines (16 points)

Kurt E. Zian comes to you with a module named “Coord.” This module
has one input, O, and two outputs, X and Y. He tells you that the outputs
X & Y help him find the coordinates of bugs on his bed, but its
throughput is too low for bug catching. You recently learnt about
pipelining in class, and so you decide to help him.
For each of the questions below, please create a valid K-stage pipeline of
the given circuit. Each component in the circuit is annotated with its propagation delay in
nanoseconds. Show your pipelining contours and place large black circles (●) on the signal
arrows to indicate the placement of pipeline registers. Give the latency and throughput of each
design, assuming ideal registers (tPD=0, tSETUP=0). Remember that our convention is to place a
pipeline register on each output. Note that invalid pipeline diagrams will receive 0 points.
Pay close attention to the direction of the arrows.

(A) (5 points) Show a maximum-throughput 3-stage pipeline using a minimal number of

registers. Invalid pipelines will earn 0 points. What are the latency and throughput of the
resulting circuit? In case you need them, extra copies of the circuit are available at the end of
the exam.

(Multiple correct pipelines possible)

Latency (ns): __ 36 ___

Throughput (ns-1): ___ 1/12 ____

6.191 Fall 2024 - 6 of 20 - Quiz #2

(C) (6 points) Show a maximum-throughput pipeline using a minimal number of registers.
Invalid pipelines will earn 0 points. What are the latency and throughput of the resulting
circuit? Extra copies of the circuit are provided at the end of the exam.

Latency (ns): __ 32 ___

Throughput (ns-1): __ 1/8 ___

6.191 Fall 2024 - 7 of 20 - Quiz #2

(D) Kurt is excited! He now wants to take the X and Y from the Coord module and pass it in as
inputs to an add-on module. For this add-on module, he is considering three different models,
DEBUG, CATCH, and SWAT, which have the same functionality, but differ in throughput
and number of pipeline stages (given in the table below).

Add-on Module Throughput (ns-1) Pipeline Stages
DEBUG 1/15 1
CATCH 1/10 2
SWAT 1/5 6

(i) (3 points) Kurt wants to maximize throughput. Which versions of the pipelined
Coord module and add-on module should Kurt choose, and what are the resulting
latency and throughput? If two combinations have identical throughput, choose the
one with better latency.

Module Coord (circle one):

3-stage pipeline Maximum-throughput pipeline

Add-on Module (circle one):

DEBUG (T = 1/15) CATCH (T = 1/10) SWAT (T = 1/5)

Total Latency (ns): ___80_____

Throughput (ns-1): ____1/8______

(ii) (2 points) Oh no! Kurt is worried that his machine is taking too long, and now wants
to minimize latency. Which versions of the pipelined Coord module and add-on
module should Kurt choose, and what are the resulting latency and throughput? If
two combinations have identical latency, choose the one with better throughput.

Module Coord (circle one):

3-stage pipeline Maximum-throughput pipeline

Add-on Module (circle one):

DEBUG (T = 1/15) CATCH (T = 1/10) SWAT (T = 1/5)

Total Latency (ns): ___60_____

Throughput (ns-1): ___1/10_____

6.191 Fall 2024 - 8 of 20 - Quiz #2

Problem 3. Processor Implementation (16 points)

Reggie Ster has written a program in RISC-V assembly that repeatedly performs the following
pair of instructions.

add t0, sp, a0
sw a0, 0(t0)

Reggie wants to reduce the number of instructions in his program by combining these two into
one instruction. He comes up with a new Add Address and Store instruction, and wants to
replace the add and sw instructions above with the aas instruction below:

aas rd, rs1, rs2

reg[rd] = reg[rs1] + reg[rs2]
Mem[reg[rs1] + reg[rs2]] = reg[rs2]

Reggie hopes that the general processor implementation from lecture (shown below) can
implement his new instruction.

6.191 Fall 2024 - 9 of 20 - Quiz #2

(A) (4 points) Without modifying the processor implementation on the previous page, fill in the
table below with what the decoder should output for the aas rd, rs1, rs2 instruction.
Write “?” for don’t care values.

AluFunc: Add, Sub, And, Or, Xor, Slt, Sltu, Sll, Srl, Sra
BrFunc: Eq, Neq, Lt, Ltu, Ge, Geu
MemFunc: Lw, Lh, Lhu, Lb, Lbu, Sw, Sh, Sb

(B) (1 point) What aas instruction should Reggie write to replace his frequently used

instruction pair (copied below from previous page)?

add t0, sp, a0
sw a0, 0(t0)

Instruction: ____ aas t0, sp, a0______

Reggie is looking to speed up his program even more, and spots a similar pair of instructions that
are also repeated many times:

add a0, a0, t0
sw a0, 0(t0)

He wants to combine these two instructions into a new Add Value and Store instruction with
the syntax and execution described below.

avs rd, rs1, rs2

reg[rd] = reg[rs1] + reg[rs2]
Mem[reg[rs2]] = reg[rs1] + reg[rs2]

aa
s
rd
,
rs
1,
 r
s2

Field Value

imm ?

AluFunc Add

BrFunc ?

BSEL 0 (rVal2)

MemFunc Sw

MemEnable 1

WDSEL 1 (aluResult)

WERF 1

PCSEL 0 (pc+4)

6.191 Fall 2024 - 10 of 20 - Quiz #2

(C) (2 points) The avs instruction that combines the functionality of the add a0, a0, t0
and the sw a0, 0(t0) instructions cannot be implemented on the current processor.
Explain why not.

Explanation:

It isn’t possible to write aluResult to an address in memory, as the aluResult is not connected
to the WD port of Data Memory
OR
rVal2 is not connected to the Adr port of Data Memory, making it impossible to write a value
to Mem[reg[rs2]].

Reggie really likes the idea of an avs instruction and decides to modify the processor to
implement it.
He needs your help to set the correct signals! For the rest of the problem, use the updated
processor diagram shown below, with Reggie’s proposed modifications in red.

6.191 Fall 2024 - 11 of 20 - Quiz #2

(D) (2 points) He decides to add a signal ADRSEL, whose mux output connects to the Adr port of
Data Memory. He wants the decoder to set ADRSEL = 1 for the avs instruction and
ADRSEL = 0 for all other instructions. What existing signals should the ADRSEL mux
inputs be connected to?

ADRSEL input 0 signal: aluResult

ADRSEL input 1 signal: rVal2

(E) (2 points) He also adds a signal MEMWDSEL, whose mux output connects to the WD port of

Data Memory. He wants this signal to be 1 for the avs instruction and 0 for all other
instructions. What signals should the MEMWDSEL mux inputs be connected to?

MEMWDSEL input 0 signal: rVal2

MEMWDSEL input 1 signal: aluResult

(F) (2 points) For each of the following signals, determine whether the mux being controlled by

that signal needs an extra input to accommodate the new instruction. If so, indicate the name
or value of the signal that needs to be added as an input to the mux. If not, indicate which
existing value of the mux control signal (i.e., 0, 1, 2) is required to make the instruction
work properly.

BSEL: Needs new input? YES NO

New input/Existing control signal: 0 (rVal2)

WDSEL: Needs new input? YES NO

New input/Existing control signal: 1 (aluResult)

(G) (3 points) Reggie is very excited about his new instruction! He wonders if he can store

reg[rs1] + reg[rs2] in memory at the value of any register, not just rs2. For instance,
he wants to calculate the result of adding a0 and a1, write that to the ra register, and
store it on the stack, like the two instructions below.

add ra, a0, a1
sw ra, 0(sp)

Can the processor be modified further to support this? Note that only the processor’s control
signals can be modified. If yes, explain the changes you would make to the processor,
especially the inputs and outputs to control mux signals. If no, explain why the processor
cannot implement this execution in one instruction.

Can we implement the code above in one instruction? Circle one: YES NO

Explanation: We need to read the values of three registers (a0, a1, and sp) but the register
file only has two read ports.

6.191 Fall 2024 - 12 of 20 - Quiz #2

Problem 4: Caches (16 points)

The two parts of this problem are independent of each other.

(A) (6 points) Consider the following 2-way set associative cache.

 Way 1 Way 0
LRU V D tag Word 1 Word 0 V D tag Word 1 Word 0
0 0 1 0 0x20 0x0123 0x1234 0 0 1 0x03 0x2345 0x3456
1 1 0 1 0x43 0x4567 0x5678 1 1 1 0x28 0x6789 0x789A
1 2 1 1 0x30 0x29AB 0x9ABC 2 1 0 0x21 0x1BCD 0x2CDE
0 3 1 0 0x41 0x3DEF 0x0EF0 3 1 0 0x63 0x4F01 0x5012

For each of the following memory accesses, determine if it results in a hit or miss. If it is a hit,
specify what data is returned. Enter NA in data returned column for a miss. If it is a miss, does
any data need to be written back to main memory? If so, provide the addresses that need to be
updated in main memory. If no write back to memory is required, then write NONE. If the
access was a hit then write NA in the addresses to update column. Consider each request
independently assuming that initial cache state is as shown above. Note that there are lw
and lb requests below.

Instruction If hit, what data is
returned?
If miss, enter NA.

If hit, enter NA.
If miss, list all addresses that need to be updated in main
memory, or enter NONE if no updates are necessary.

lw x1, 0x430(x0) 0x2CDE NA

lw x1, 0x30(x0) NA 0x610, 0x614

lb x1, 0x83D(x0) 0x3D NA

0x430 = 0b 0100_0011_0000 = 0b 010_0001_10_0_00
tag = 0x21, index = 2, block offset = 0, byte offset = 0 results in a hit in way 0. Word 0 of that
cache line, 0x2CDE, is returned.

0x30 = 0b 0011_0000 = 0b 001_10_0_00
tag = 0x1, index = 2, block offset = 0, byte offset = 0 results in a miss. Since the LRU for index 2
is 1, that means that we need to replace the line in way 1. Since the dirty bit is set in way 1, index
2, that means we must write the line back to main memory. Tag 0x30 in index 2 corresponds to
memory addresses 0011_0000_10_1_00 = 0_0110_0001_0100 = 0x614 and 0011_0000_10_0_00
= 0_0110_0001_0000 = 0x610.

0x83D = 0b 1000_0011_1101 = 0b 100_0001_11_1_01
tag = 0x41, index = 3, block offset = 1, byte offset = 1 results in a hit in way 1. Since our byte
offset is 1 we need to return byte 1 of 0x3DEF which is 0x3D.

6.191 Fall 2024 - 13 of 20 - Quiz #2

(B) (10 points) The following code accesses two 100 element arrays A and B and swaps their
elements. Array A begins at memory location 0x400, and array B begins at memory location
0x800.

addi x1, x0, 100 // array size (x1) initialized to 100
addi x2, x0, 0 // array index (x2) initialized to 0

. = 0x100 // loop code begins at address 0x100

loop: slli x3, x2, 2 // compute offset into array
 lw x4, 0x400(x3)
 lw x5, 0x800(x3)
 sw x4, 0x800(x3)
 sw x5, 0x400(x3)
 addi x2, x2, 1 // go to next element
 bne x2, x1, loop

Consider this code once the loop has been running for many iterations. Compute the steady state
hit rate of executing this loop on the following two cache configurations, each of which can hold
a total of 16 words.

Cache A: A 4-way set associative cache with a block size of 2 and an LRU replacement strategy.

Cache B: A fully associative cache with a block size of 4 and an LRU replacement strategy.

We have provided diagrams of caches A and B on the following page. You may use them if you
find them helpful, but you do not need to fill them out.

Steady state instruction hit rate of cache A: _________7/7_______

Steady state data hit rate of cache A: ____6/8 = 3/4_______

Steady state instruction hit rate of cache B: _________7/7_______

Steady state data hit rate of cache B: ___14/16 = 7/8______

In both caches all of the instructions remain in the cache the entire time resulting in 100% hit rate.
In cache A, the instructions will be spread across both rows of 2-ways of the cache. In cache B,
the instructions will take up two rows of the cache.

There are 4 data accesses every iteration of the loop. For cache A, the two lw instructions miss
on even indexes of arrays A and B, but they hit on the sw instructions. All four memory accesses
hit on the odd indexes of the arrays. This means that every two ierations of the loop there are 2
data misses for cache A resulting in a hit rate of 6/8 or ¾.

For cache B, the two lw instructions miss on index 0 of arrays A and B but hit on the sw
instructions for index 0 and lw and sw for all other indexes. So across 4 iterations of the loop,
there are 2 data misses resulting in a hit rate of 14/16 or 7/8.

6.191 Fall 2024 - 14 of 20 - Quiz #2

Part B code repeated for convenience:

addi x1, x0, 100 // array size (x1) initialized to 100
addi x2, x0, 0 // array index (x2) initialized to 0

. = 0x100 // loop code begins at address 0x100

loop: slli x3, x2, 2 // compute offset into array
 lw x4, 0x400(x3)
 lw x5, 0x800(x3)
 sw x4, 0x800(x3)
 sw x5, 0x400(x3)
 addi x2, x2, 1 // go to next element
 bne x2, x1, loop

Cache A: 4-way set associative with block size of 2

 Way 0 Way 1

Index Tag Word 1 Word 0 Index Tag Word 1 Word 0

0 0

1 1

 Way 2 Way 3

Index Tag Word 1 Word 0 Index Tag Word 1 Word 0

0 0

1 1

Cache B: Fully associative with block size of 4

Tag Word 3 Word 2 Word 1 Word 0

6.191 Fall 2024 - 15 of 20 - Quiz #2

Problem 5. Pipelined Processors (18 points)

Alyssa P. Hacker has hacked into Ben Bitdiddle’s computer! Though at the moment, the only
thing Alyssa can do is look at what instruction is currently in each stage of Ben’s processor.
However, Alyssa has plans to use this to extract Ben’s password.

Consider the following code, which checks if the value of input x, in register a0, matches the
value at memory address 0x234
 lw a1, 0x234(x0) // load secret into a1
 li a2, 1 // initialize match to True
 li a5, 0
loop:
 andi a3, a1, 1 // get last bit of secret
 andi a4, a0, 1 // get last bit of x

beq a3, a4, skip
li a2, 0 // if x[0] != secret[0], then match is False
addi a5, a5, 1

skip:
 srli a1, a1, 1 // right shift secret by 1
 srli a0, a0, 1 // right shift x by 1
 bnez a1, loop
end:
 mv a0, a2 // move match to a0
 ret

. = 0x234
 .word ??? // super secret password

Alyssa knows that Ben’s processor uses a 4-stage pipeline (IF, DEC, EXE/MEM, WB). In this
pipeline:

● The EXE and MEM stages have been merged into one pipeline stage.
● The result of a lw operation is available at the beginning of the WB stage.
● Branches are predicted not taken.
● The processor has hardware to resolve branches and jumps in the DEC stage.
● Full bypassing is implemented.

(A) (8 points) Fill in the pipeline diagram below assuming that the loop has been running for a

while. Cycle 0 begins a new loop iteration by fetching the andi a3, a1, 1 instruction.
Assume that the beq and bnez branches are both taken in this iteration of the loop. Draw
arrows indicating each use of bypassing. Ignore cells shaded in gray.

 0 1 2 3 4 5 6 7 8 9 10

IF andi andi beq li srli srli bnez mv andi andi beq

DEC andi andi beq NOP srli srli bnez NOP andi andi

EXE andi andi beq NOP srli srli bnez NOP andi

WB andi andi beq NOP srli srli bnez NOP

6.191 Fall 2024 - 16 of 20 - Quiz #2

(B) (3 points) In steady state, how many cycles does the loop take when the beq branch is taken?
How many cycles are wasted due to stalls? How many are wasted due to annulments?

Number of cycles per loop iteration: ________8__________

Number of cycles per loop iteration wasted due to stalls: ________0__________

Number of cycles per loop iteration wasted due to annulments: ________2__________

(C) (6 points) Now, let’s see what happens when the beq a3, a4, skip branch is not taken

(indicating a mismatch). How many cycles does the loop take when the beq branch is not
taken? How many cycles are wasted due to stalls? How many are wasted due to annulments?

To answer these questions, you may find it helpful to fill in the following pipeline diagram,
but you will only be graded on your numeric answers below the pipeline diagram. Assume
that the loop has been running for a while and in cycle 0 a new loop iteration begins by
fetching the andi a3, a1, 1 instruction. Recall that here the beq a3, a4, skip
branch is not taken. Assume that the bnez branch is still taken to repeat the loop.

 0 1 2 3 4 5 6 7 8 9 10

IF andi andi beq li addi srli srli bnez mv andi andi

DEC andi andi beq li addi srli srli bnez NOP andi

EXE andi andi beq li addi srli srli bnez NOP

WB andi andi beq li addi srli srli bnez

 Number of cycles per loop iteration: _______9__________

Number of cycles per loop iteration wasted due to stalls: _______0__________

Number of cycles per loop iteration wasted due to annulments: _______1__________

(D) (1 point) Alyssa tries guessing 0x0 and 0x1, and notices that 0x1 took 0.1ps longer to finish
executing than 0x0 did. What is the last bit of secret?

Last bit of secret: ______0__________

6.191 Fall 2024 - 17 of 20 - Quiz #2

Problem 6. Pipelined Processor Performance (18 points)

In this problem, you will explore the two different processor designs shown in Figures 1 and 2 in
parts (A) and (B). The processor in Figure 1 is a fully bypassed five-stage RISC-V processor. The
processor in Figure 2 moves branch resolution and jump target resolution from the Execute stage
into the Decode stage by adding a dedicated branch comparator and adder after the bypass muxes.
Both processors use magic (combinational read, clocked write) instruction and data
memories that return the result of a load in the same cycle it was requested.

Table 1 contains the delay of the various components in the datapath.

We will examine how these two processors execute the following function written in assembly.
The function compares each element in an array of integers to two search values. If a value is
found, then the function returns the index of the value. If neither of the two search values are
found, then the function returns -1. Assume the following initial register values: t4 initially holds
the pointer to the array of integers; t5 holds the size of the array; t6 and t3 hold the two search
values. t2 holds the return value. Assume that t5 is initially 64 and that none of the search values
are actually present in the array (i.e., the loop executes 64 times).

0x1000 addi t0, zero, 0

loop:
0x1004 lw t1, 0(t4)

// check value 1
0x1008 bne t1, t6, L1
0x100c j done

L1:
// check value 2

0x1010 bne t1, t3, L2
0x1014 j done

L2:
0x1018 addi t4, t4, 4
0x101c addi t0, t0, 1
0x1020 bne t0, t5, loop
0x1024 addi t2, zero, -1
0x1028 j end

done:
0x102c addi t2, t0, 0
0x1030 j end
 end:

Component Delay (ns)
Register read/write 1
Register File read/write 10
Memory read/write 20
+4 unit 4
Decode 5
Br cmp / Adder 8
Mux 3
Execute 20

Table 1: Datapath component delays.

6.191 Fall 2024 - 18 of 20 - Quiz #2

(A) (10 points) Performance when Resolving Branch in EXE Stage

Figure 1

i. Given the datapath component delays in Table 1, identify and highlight the critical path
in Figure 1. Then compute the cycle time and enter it in Table 2 on the next page.

ii. Use the following pipeline diagram to illustrate how the first iteration of the loop
executes on the processor in Figure 1, a fully bypassed five-stage RISC-V pipelined
processor with magic memories. Assume that the lw instruction is fetched in cycle 1.
Remember that branches are resolved in the EXE stage and incorrectly fetched
instructions are annulled (even if the same instruction will get fetched again). Assume
that the branch target and jump target computations are also performed in the EXE stage.
You must account for all bypass paths used but you do not need to draw in the bypass
arrows in the pipeline diagram. Make sure to include the fetch of lw on the second
iteration. You do not need to fill in any columns beyond the fetch of that second lw.

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

IF lw bne j j bne bne j addi addi addi bne addi j lw

DEC lw bne bne j - bne j - addi addi bne addi - lw

EXE lw - bne - - bne - - addi addi bne - - lw

MEM lw - bne - - bne - - addi addi bne - -

WB lw - bne - - bne - - addi addi bne -

1+20+3+3+1 = 28

(Students do not need to draw the bypass arrows.)

6.191 Fall 2024 - 19 of 20 - Quiz #2

iii. Based on this pipeline diagram, compute the execution time for one iteration of this
loop. Fill in the appropriate row of Table 2. You must show your work.

Part Branch
Resolution

Useful Instructions/
Loop

Avg Cycles/
Instruction

Time (ns) /
Cycle

Time (ns) /
Loop

A EXE 6 13/6 28 28*13=364
B DEC 6 10/6 39 39*10=390
Table 2: Performance comparison between datapaths of Figure 1 and Figure 2.

(B) (8 points) Performance when Resolve Branch in DEC Stage

i. Given the datapath component delays in Table 1, identify and highlight the critical path
in Figure 2 below. Then compute the cycle time and enter it in Table 2 above. This
processor is identical to the processor in Figure 1 except for one key difference: the
branch is resolved in the DEC stage and the branch and jump target addresses are
computed in the DEC stage as well.

Figure 2

1+20+3+3+8+3+1 = 39

6.191 Fall 2024 - 20 of 20 - Quiz #2

ii. Use the following pipeline diagram to illustrate how the first iteration of the loop
executes on the processor in Figure 2. Assume that the lw instruction is fetched in
cycle 1. Recall that in this processor branches are resolved in the DEC stage and
incorrectly fetched instructions are annulled (even if the same instruction will get
fetched again). In addition, branch target and jump target computations are also
performed in the DEC stage. This is achieved by adding a dedicated branch comparison
and adder unit to the decode stage. You must account for all bypass paths used but you
do not need to draw in the bypass arrows in the pipeline diagram. Make sure to include
the fetch of lw on the second iteration. You do not need to fill in any columns
beyond the fetch of that second lw.

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

IF lw bne j j bne J addi addi bne addi lw

DEC lw bne bne - bne - addi addi bne - lw

EXE lw - bne - bne - addi addi bne - lw

MEM lw - bne - bne - addi addi bne - lw

WB lw - bne - bne - addi addi bne - lw

iii. Based on this pipeline diagram, compute the execution time for one iteration of this
loop. Fill in the appropriate row of Table 2. You must show your work.

END OF QUIZ 2!

(Students do not need to draw the bypass arrows.)

