Note: A small subset of essential problems are marked with a red star (★). We especially encourage you to try these out before recitation.

Problem 1. ★

We want to implement a parametric function `reverse#(n)` that reverses the bits of its n-bit input argument. For example, if `Bit#(4) x = {a, b, c, d}`, then `reverse#(4)(x)` should return `{d, c, b, a}.

(A) Implement `reverse#(n)` by recursing on the parameter `n` (i.e., calling `reverse#(k)` with `k < n`). You cannot use a `for` loop.

```
function Bit#(n) reverse#(Integer n)(Bit#(n) x);
endfunction
```

(B) Implement `reverse#(n)` using a `for` loop.

```
function Bit#(n) reverse#(Integer n)(Bit#(n) x);
Endfunction
```
Problem 2.

Parameterize the bit-scan-reverse function from Lab 1 to take as input an n-bit vector and output the index of the first non-zero bit scanned from the largest index (i.e., the position of the most-significant 1). Assume that the parameter \(n \) is a power of 2. Assume that 0 is not a valid input to your top-level function. For an input of 0, the output may be whatever is convenient. Hint: an output of 0 may be convenient.

(A) Implement \(\text{bitScanReverse}(n) \) without using a for loop.

```graph
function Bit#(log2(n)) bitScanReverse#(Integer n)(Bit#(n) x); endfunction
```

(B) Implement \(\text{bitScanReverse}(n) \) using a for loop.

```graph
function Bit#(log2(n)) bitScanReverse#(Integer n)(Bit#(n) x); endfunction
```

(C) When synthesized manually (i.e., without logic optimizations, just the gates that your circuit expresses), how does propagation delay grow with the number of input bits for each implementation? Use order-of notation.
Problem 3. ★

In Lab 1, we write a function `isPowerOfTwo` that computes whether a 4-bit input is a power of 2 or not. This function checks whether there is only one bit in the input that is equal to 1.

We want to generalize `isPowerOfTwo` by rewriting it as a parametric function that works with inputs of arbitrary bit-width.

(A) Implement `isPowerOfTwo#(n)` using a `for` loop. Do not use addition to count up the bits of the input, which would be inefficient.

```plaintext
function Bool isPowerOfTwo#(Integer n)(Bit#(n) x);
  // Implementation
endfunction
```

(B) If your implementation above has $\Theta(n)$ propagation delay when synthesized manually (i.e., without logic optimizations, just the gates that your circuit expresses), then rewrite `isPowerOfTwo#(n)` so that it has $\Theta(\log n)$ propagation delay.

Hint: Since you used a `for` loop above, you probably have a linear chain of gates in your design. Instead, think about how to solve this problem by composing functions so that, at each step, you halve the number of input bits each function processes. This will produce a tree of gates with logarithmic depth. You'll likely need to use an auxiliary parametric function that recurses on its own parameter.
Problem 4. From Past Quizzes (Fall 2018) ★

(A) The following parametric function f performs a basic operation using a and b. We want f_2 to implement the same function as f. Fill in the blank in f_2 to make the two functions equivalent. Write a single-line expression that uses the ternary operator `(? :).

```plaintext
function Bit#(n) f#(Integer n)(Bit#(n) a, Bit#(1) b);
  Bit#(n) x = 0;
  for (Integer i = 0; i < n; i = i+1) begin
    x[i] = a[i] ^ b;
  end
  return x;
endfunction

function Bit#(n) f2#(Integer n)(Bit#(n) a, Bit#(1) b);
  return (       ___       ) ?     ___ :       ___;
endfunction
```

(B) Write the truth table for the combinational device described by the function below.

```plaintext
function Bit#(2) f(Bit#(1) a, Bit#(1) b, Bit#(1) c);
  Bit#(2) ret = zeroExtend(a) + signExtend(b);
  case (a,b)
    0: ret = {1, c};
    2: ret = {a ^ b, a & b};
    3: ret = ~signExtend(c);
  endcase
  return ret;
endfunction
```

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>ret[1]</th>
<th>ret[0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
(C) The following parametric function \(g \) performs a specific arithmetic operation on \(n \)-bit operands \(a \) and \(b \). We want the function \(g2 \) to implement \(g \) in a single line of code. Fill in the blank with a single expression to make \(g2 \) equivalent to \(g \).

```plaintext
function Bit#(1) g#(Integer n)(Bit#(n) a, Bit#(n) b);
    Bit#(2) ret = 'b10;
    for (Integer i = n-1 ; i >= 0 ; i = i-1) begin
        if ({a[i], b[i]} == 'b01) ret = {0, ret[1] | ret[0]};
        else if ({a[i], b[i]} == 'b10) ret = {0, ret[0]};
    end
    return ret[1] | ret[0];
endfunction

function Bit#(1) g2#(Integer n)(Bit#(n) a, Bit#(n) b);
    return ____________________________;
endfunction
```

(D) Finish the following circuit diagram to implement function `computeB`, given below. You may only use 32-bit 2-to-1 multiplexers, constants (0, 1, 2, 3, ...) and logic gates (AND, NOT, OR, XOR). We have provided three 32-bit greater-than-or-equal (\(\geq \)) comparators for you.

```plaintext
function Bit#(32) computeB(Bit#(32) in);
    Bit#(32) out = 0;
    if ( in >= 1 ) out = 1;
    if ( in >= 5 ) out = 5;
    if ( in >= 10 ) out = 10;
    return out;
endfunction
```
Problem 5. From Past Quizzes (Fall 2020)

(A) Consider a function, \(\text{mod3} \), that takes an unsigned 2-bit input \(x \) and returns a 2-bit result which is equal to \(x \) modulo 3. Your result should be in the range of \{0, 1, 2\}. Fill in the truth table below so that it describes the correct behavior of this function.

<table>
<thead>
<tr>
<th>(x[1])</th>
<th>(x[0])</th>
<th>(\text{out}[1])</th>
<th>(\text{out}[0])</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(B) Implement the \(\text{mod3} \) function in Minispec by filling in the function definition below. Your code should describe a circuit that when synthesized manually without optimizations results in at most 4 (one or two input) logic gates. Your solution can use the following gates: inverter, 2-input AND, OR, NAND, NOR, or XOR gates. (Hint: The bitwise logical operations in Minispec are: \(\sim \) (NOT), \& (AND), \| (OR), ^ (XOR)).

```minispec
function Bit#(_____) mod3 (Bit#(_____) x);
return ________________;
endfunction
```

(C) Manually synthesize your function into a combinational circuit.
(D) Complete the truth table for the following Minispec function.

```plaintext
function Bit#(3) f(Bit#(3) a);
    Bit#(3) ret = 3'b100;
    case {{a[2],a[0]}}
        0: ret = {1'b0, a[1]^a[0], 1'b1};
        1: ret = signExtend(a[1]) & ret;
        3: ret = {a[0], ~a[2:1]};
        default: ret = 3'b001;
    endcase
    return ret;
endfunction
```

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Problem 6: From Past Quizzes (Fall 2020)

For an unsigned n-bit number x,

$$x \mod 3 = (x[0] - x[1] + x[2] - \ldots + (-1)^n x[n]) \mod 3.$$

Complete the following Minispec function `mod3` that takes an unsigned n-bit input x and returns a 2-bit result equal to x modulo 3 in the range of $\{0,1,2\}$.

```markdown
function __________ mod3#(____________) (_________ x);
    if (n==1) return __________________
    else begin
        Integer h=n/2;
        Bit#(2) lower = mod3#(h) (x[h-1:0]);
        Bit#(2) upper = mod3#(n-h) (x[n-1:h]);
        if ((h&1)==1) begin
            if (upper == lower + 1) return __________
            else if ((lower == 0) && (upper==2)) return __________
        return __________
        end
        else begin
            return ____________________________
        end
    end
endfunction