Combinational Logic and Introduction to Minispec
Lecture Goals

- Learn how to design large combinational circuits through three useful examples:
 - Adder
 - Multiplexers
 - Shifter

- Learn how to implement combinational circuits in the Minispec hardware description language (HDL)
 - Design each combinational circuit as a function, which can be simulated or synthesized into gates
Goal: Build a circuit that takes two n-bit inputs a and b and produces (n+1)-bit output $s = a + b$

Approach: Implement the standard algorithm for binary addition (seen in 6.190)
The i^{th} step of each addition

- Takes three 1-bit inputs: a_i, b_i, c_i (carry-in)
- Produces two 1-bit outputs: s_i, c_{i+1} (carry-out)
- The 2-bit output $c_{i+1}s_i$ is the binary sum of the three inputs

Can you build a circuit that performs a single step with what you’ve learned so far?
Combinational Logic for an Adder

- First, build a full adder (FA), which
 - Adds three one-bit numbers: a, b, and carry-in
 - Produces a sum bit and a carry-out bit

- Then, cascade FAs to perform binary addition

- Result: A ripple-carry adder (simple but slow)
Deriving the Full Adder

Truth table

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>cin</th>
<th>cout</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Boolean expressions

\[s = a \oplus b \oplus c_{in} \]

\[c_{out} = a \cdot b + a \cdot c_{in} + b \cdot c_{in} \]
Describing a 32-bit Adder
alternatives

- Truth table with 2^{64} rows and 33 columns
- 32 sets of Boolean equations, where each set describes a FA
- Use some ad-hoc notation to describe recurrences
 - $s_k = a_k \oplus b_k \oplus c_k$
 - $c_{k+1} = a_k \cdot b_k + a_k \cdot c_k + b_k \cdot c_k \quad 0 \leq k \leq 31$
- Circuit diagrams: tedious to draw, error-prone

- A hardware description language (HDL), *i.e.*, a programming language specialized to describe hardware
 - Precisely specify the structure and behavior of digital circuits
 - Designs can be automatically simulated or synthesized to hardware
 - Enables building hardware with same principles used to build software (write and compose simple, reusable building blocks)
 - Uses a familiar syntax (functions, variables, control-flow statements, etc.)

But be aware of the differences!
Introduction to Minispec

A simple HDL based on Bluespec
Combinational Logic as Functions

- In Minispec, combinational circuits are described using functions

```
function Bool inv(Bool x);
   Bool result = !x;
   return result;
endfunction
```

- All values have a fixed type, which is known statically (e.g., result is of type `Bool`)
- Note: Types Start With An Uppercase Letter, variable and function names are lowercase
Bool Type and Operations

- Values of type `Bool` can be True or False
- Bool supports Boolean and comparison operations:

```c
Bool a = True;
Bool b = False;

Bool x = !a;    // False since a == True
Bool y = a && b; // False since b == False
Bool z = a || b; // True since a == True

Bool n = a != b; // True; equivalent to XOR
Bool e = a == b; // False; equivalent to XNOR
```

- Bool is the simplest type, but working with many single-bit values is tedious
 - Need a type that represents multi-bit values!
Bit#(n) Type and Operations

- Bit#(n) represents an n-bit value
- Bit#(n) supports the following basic operations:
 - Bitwise logical: ~ (negation), & (AND), | (OR), ^ (XOR)
    ```
    Bit#(4) a = 4'b0011; // 4-bit binary 3
    Bit#(4) b = 4'b0101; // 4-bit binary 5
    Bit#(4) x = ~a;     // 4'b1100
    Bit#(4) y = a & b;  // 4'b0001
    Bit#(4) z = a ^ b;  // 4'b0110
    ```
 - Bit selection
    ```
    Bit#(1) l = a[0];   // 1'b1 (least significant)
    Bit#(3) m = a[3:1]; // 3'b001
    ```
 - Concatenation
    ```
    Bit#(8) c = {a, b}; // 8'b00110101
    ```
Full Adder in Minispec

\[
s = a \oplus b \oplus c_{in}
\]
\[
c_{out} = a \cdot b + a \cdot c_{in} + b \cdot c_{in}
\]

function Bit#(2) fullAdder(Bit#(1) a, Bit#(1) b, Bit#(1) cin);
Bit#(1) s = a ^ b ^ cin;
Bit#(1) cout = (a & b) | (a & cin) | (b & cin);
return {cout, s};
endfunction
2-bit Ripple-Carry Adder

function Bit#(3) rca2(Bit#(2) a, Bit#(2) b, Bit#(1) cin);
 Bit#(2) lower = fullAdder(a[0], b[0], cin);
 Bit#(2) upper = fullAdder(a[1], b[1], lower[1]);
return {upper, lower[0]};
endfunction

- Functions are **inlined**: Each function call creates a new instance (copy) of the called circuit
 - Allows composing simple circuits to build larger ones
4-bit Ripple-Carry Adder

Composing functions lets us build larger circuits, but writing very large circuits this way is tedious.

- Next lecture: Writing an n-bit adder in a single function

function Bit#(5) rca4(Bit#(4) a, Bit#(4) b, Bit#(1) cin);
 Bit#(3) lower = rca2(a[1:0], b[1:0], cin);
 Bit#(3) upper = rca2(a[3:2], b[3:2], lower[2]);
return {upper, lower[1:0]};
endfunction
Multiplexers
2-way Multiplexer

- A 2-way multiplexer or mux selects between two inputs \(a \) and \(b \) based on a single-bit input \(s \) (select input).

- Gate-level implementation:

\[
y = a \cdot \bar{s} + b \cdot s
\]
If a and b are n-bit wide, the 2-way multiplexer can be implemented with n one-bit 2-way multiplexers in parallel

- s is the same input for all the replicated structures
4-way Multiplexer

- A 4-way multiplexer selects between four inputs based on the value of a 2-bit input s

- Typically implemented using 2-way multiplexers
A k-way multiplexer can be implemented with a tree of \(k-1\) 2-way multiplexers

- Example: 8-way multiplexer

How many 2-way one-bit muxes needed to implement a k-way n-bit mux?

\[(k-1)*n\]
Multiplexers in Minispec

- 2-way mux → Conditional operator

\[
\begin{align*}
a & \quad 0 \\
b & \quad 1 \\
s & \quad ?
\end{align*}
\]

Minispec: \(s? b : a \)

Python: \(b \text{ if } s \text{ else } a \)

s has type \(\text{Bool} \); True is treated as 1 and False as 0

- \(k \)-way mux → Case expression

\[
\begin{align*}
a & \quad 0 \\
b & \quad 1 \\
c & \quad 2 \\
d & \quad 3 \\
s & \quad 2
\end{align*}
\]

Minispec: \(\text{case } (s) \)

\[
\begin{align*}
0 & : a; \\
1 & : b; \\
2 & : c; \\
3 & : d;
\end{align*}
\]

endcase

s has type \(\text{Bit#(2)} \)
Aside: No Conditional Execution!

- Given this conditional statement...

 \[s? \ foo(x) : \ bar(y) \]

- In software, the program would first evaluate \(s \), then run either \(\foo(x) \) or \(\bar(y) \)

- But in hardware, this statement instantiates and evaluates both \(\foo(x) \) and \(\bar(y) \), in parallel!

![Diagram showing parallel execution of `foo(x)` and `bar(y)`]
Selecting a Wire: x[i]

- Constant selector: e.g., x[2]

- Dynamic selector: x[i]

Assume x is 4 bits wide.
Fixed-Size Shifts

- Fixed-size shift operation is cheap in hardware
 - Just wire the circuit appropriately
- Logical shifts insert zeros

- Arithmetic shifts are similar

Arithmetic right shift by \(n \) divides integer in two’s complement representation by \(2^n \)
Logical Right Shift by \(s \)

- Suppose we want a shifter that right-shifts an \(N \)-bit input \(x \) by \(s \), where \(N=32 \) and \(0 \leq s \leq 31 \)
- Naïve approach: Create 32 different fixed-size shifters and select using a mux

How many 2-way 1-bit muxes are needed to implement this 32-way 32-bit mux?

\[
(32 - 1) \times 32 = 992
\]

\(\approx 4k \) gates

We can do better!
Barrel Shifter
An efficient circuit to perform variable-size shifts

- A barrel shifter performs shift by s using a series of fixed-size power-of-2 shifts
 - For example, shift by 5 (=4+1) can be done with shifts of sizes 4 and 1
 - The bit encoding of s tells us which shifts are needed: if the i^{th} bit of n is 1, then we need to shift by 2^i
 - Ex: $5 = 0b00101$
 - Implementation: A cascade of $\log_2 N$ muxes that choose between shifting by 2^i and not shifting

How many 2-way 1-bit muxes?

$N \times \log_2 N = 32 \times 5 = 160$
Barrel Shifter Implementation

- Example in Minispec for N=4
 - Only need 2 bits for s, why?

- Use conditional operator for 2-way muxes

- Use concatenation and bit selection for fixed shifts

```verbatim
function Bit#(4) barrelShifter(Bit#(4) x, Bit#(2) s);
    Bit#(4) r1 = (s[1] == 0) ? x : {2'b00, x[3:2]};
    Bit#(4) r0 = (s[0] == 0) ? r1 : {1'b0, r1[3:1]};
    return r0;
endfunction
```
Thank you!

Next lecture:
Complex combinational circuits
and advanced Minispec